[HTML][HTML] Deep learning based synthesis of MRI, CT and PET: Review and analysis

S Dayarathna, KT Islam, S Uribe, G Yang, M Hayat… - Medical image …, 2024 - Elsevier
Medical image synthesis represents a critical area of research in clinical decision-making,
aiming to overcome the challenges associated with acquiring multiple image modalities for …

Deepfakes generation and detection: State-of-the-art, open challenges, countermeasures, and way forward

M Masood, M Nawaz, KM Malik, A Javed, A Irtaza… - Applied …, 2023 - Springer
Easy access to audio-visual content on social media, combined with the availability of
modern tools such as Tensorflow or Keras, and open-source trained models, along with …

Covidgan: data augmentation using auxiliary classifier gan for improved covid-19 detection

A Waheed, M Goyal, D Gupta, A Khanna… - Ieee …, 2020 - ieeexplore.ieee.org
Coronavirus (COVID-19) is a viral disease caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). The spread of COVID-19 seems to have a detrimental effect …

Convolutional neural networks for medical image analysis: state-of-the-art, comparisons, improvement and perspectives

H Yu, LT Yang, Q Zhang, D Armstrong, MJ Deen - Neurocomputing, 2021 - Elsevier
Convolutional neural networks, are one of the most representative deep learning models.
CNNs were extensively used in many aspects of medical image analysis, allowing for great …

[HTML][HTML] Application and theory gaps during the rise of artificial intelligence in education

X Chen, H Xie, D Zou, GJ Hwang - Computers and Education: Artificial …, 2020 - Elsevier
Considering the increasing importance of Artificial Intelligence in Education (AIEd) and the
absence of a comprehensive review on it, this research aims to conduct a comprehensive …

[HTML][HTML] An overview of deep learning in medical imaging focusing on MRI

AS Lundervold, A Lundervold - Zeitschrift für Medizinische Physik, 2019 - Elsevier
What has happened in machine learning lately, and what does it mean for the future of
medical image analysis? Machine learning has witnessed a tremendous amount of attention …

Generative adversarial network in medical imaging: A review

X Yi, E Walia, P Babyn - Medical image analysis, 2019 - Elsevier
Generative adversarial networks have gained a lot of attention in the computer vision
community due to their capability of data generation without explicitly modelling the …

Deep learning in medical imaging and radiation therapy

B Sahiner, A Pezeshk, LM Hadjiiski, X Wang… - Medical …, 2019 - Wiley Online Library
The goals of this review paper on deep learning (DL) in medical imaging and radiation
therapy are to (a) summarize what has been achieved to date;(b) identify common and …

Medical image synthesis for data augmentation and anonymization using generative adversarial networks

HC Shin, NA Tenenholtz, JK Rogers… - … and Synthesis in …, 2018 - Springer
Data diversity is critical to success when training deep learning models. Medical imaging
data sets are often imbalanced as pathologic findings are generally rare, which introduces …

Current applications and future impact of machine learning in radiology

G Choy, O Khalilzadeh, M Michalski, S Do, AE Samir… - Radiology, 2018 - pubs.rsna.org
Recent advances and future perspectives of machine learning techniques offer promising
applications in medical imaging. Machine learning has the potential to improve different …