Diffusion models: A comprehensive survey of methods and applications

L Yang, Z Zhang, Y Song, S Hong, R Xu, Y Zhao… - ACM Computing …, 2023 - dl.acm.org
Diffusion models have emerged as a powerful new family of deep generative models with
record-breaking performance in many applications, including image synthesis, video …

Self-supervised learning of graph neural networks: A unified review

Y Xie, Z Xu, J Zhang, Z Wang… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Deep models trained in supervised mode have achieved remarkable success on a variety of
tasks. When labeled samples are limited, self-supervised learning (SSL) is emerging as a …

Graphmae: Self-supervised masked graph autoencoders

Z Hou, X Liu, Y Cen, Y Dong, H Yang, C Wang… - Proceedings of the 28th …, 2022 - dl.acm.org
Self-supervised learning (SSL) has been extensively explored in recent years. Particularly,
generative SSL has seen emerging success in natural language processing and other …

Data augmentation for deep graph learning: A survey

K Ding, Z Xu, H Tong, H Liu - ACM SIGKDD Explorations Newsletter, 2022 - dl.acm.org
Graph neural networks, a powerful deep learning tool to model graph-structured data, have
demonstrated remarkable performance on numerous graph learning tasks. To address the …

Simgrace: A simple framework for graph contrastive learning without data augmentation

J Xia, L Wu, J Chen, B Hu, SZ Li - … of the ACM Web Conference 2022, 2022 - dl.acm.org
Graph contrastive learning (GCL) has emerged as a dominant technique for graph
representation learning which maximizes the mutual information between paired graph …

Graph self-supervised learning: A survey

Y Liu, M Jin, S Pan, C Zhou, Y Zheng… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Deep learning on graphs has attracted significant interests recently. However, most of the
works have focused on (semi-) supervised learning, resulting in shortcomings including …

Ogb-lsc: A large-scale challenge for machine learning on graphs

W Hu, M Fey, H Ren, M Nakata, Y Dong… - arXiv preprint arXiv …, 2021 - arxiv.org
Enabling effective and efficient machine learning (ML) over large-scale graph data (eg,
graphs with billions of edges) can have a great impact on both industrial and scientific …

Infogcl: Information-aware graph contrastive learning

D Xu, W Cheng, D Luo, H Chen… - Advances in Neural …, 2021 - proceedings.neurips.cc
Various graph contrastive learning models have been proposed to improve the performance
of tasks on graph datasets in recent years. While effective and prevalent, these models are …

Self-supervised learning on graphs: Contrastive, generative, or predictive

L Wu, H Lin, C Tan, Z Gao, SZ Li - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Deep learning on graphs has recently achieved remarkable success on a variety of tasks,
while such success relies heavily on the massive and carefully labeled data. However …

Augmentation-free self-supervised learning on graphs

N Lee, J Lee, C Park - Proceedings of the AAAI conference on artificial …, 2022 - ojs.aaai.org
Inspired by the recent success of self-supervised methods applied on images, self-
supervised learning on graph structured data has seen rapid growth especially centered on …