This book discusses the p-adic modular forms, the eigencurve that parameterize them, and the p-adic L-functions one can associate to them. These theories and their …
R Pollack, G Stevens - Annales scientifiques de l'Ecole normale …, 2011 - numdam.org
R.–Cet article est une exploration constructive des rapports entre les symboles modulaires classiques et les symboles modulaires p-adiques surconvergents. Plus …
P Colmez - ASTERISQUE-SOCIETE MATHEMATIQUE DE …, 2004 - numdam.org
Si M est un motif défini sur un corps de nombres, on sait lui associer (au moins conjecturalement) une fonction analytique complexe L (M, s) définie par un produit eulérien …
We define a family of Coleman maps for positive crystalline p-adic representations of the absolute Galois group of Qp using the theory of Wach modules. Let f=∑ anqn be a …
Heegner points and Beilinson–Kato elements: A conjecture of Perrin-Riou - ScienceDirect Skip to main contentSkip to article Elsevier logo Journals & Books Search RegisterSign in …
D Benois - American journal of mathematics, 2011 - muse.jhu.edu
Using the theory of $(\phi,\Gamma) $-modules we generalize Greenberg's construction of the $\cal {L} $-invariant to $ p $-adic representations which are semistable at $ p $.\This …
A Lei - Compositio Mathematica, 2011 - cambridge.org
We generalise works of Kobayashi to give a formulation of the Iwasawa main conjecture for modular forms at supersingular primes. In particular, we give analogous definitions of the …
D Barrera Salazar, C Williams - Mathematische Zeitschrift, 2021 - Springer
Let GG be a connected reductive group over QQ such that G= G/Q _p G= G/Q p is quasi-split, and let Q ⊂ GQ⊂ G be a parabolic subgroup. We introduce parahoric overconvergent …
C Williams - Proceedings of the London Mathematical Society, 2017 - Wiley Online Library
The theory of overconvergent modular symbols, developed by Rob Pollack and Glenn Stevens, gives a beautiful and effective construction of the p‐adic L‐function of a modular …