Multiclass feature selection with metaheuristic optimization algorithms: a review

OO Akinola, AE Ezugwu, JO Agushaka, RA Zitar… - Neural Computing and …, 2022 - Springer
Selecting relevant feature subsets is vital in machine learning, and multiclass feature
selection is harder to perform since most classifications are binary. The feature selection …

A systematic review of emerging feature selection optimization methods for optimal text classification: the present state and prospective opportunities

EO Abiodun, A Alabdulatif, OI Abiodun… - Neural Computing and …, 2021 - Springer
Specialized data preparation techniques, ranging from data cleaning, outlier detection,
missing value imputation, feature selection (FS), amongst others, are procedures required to …

Electric eel foraging optimization: A new bio-inspired optimizer for engineering applications

W Zhao, L Wang, Z Zhang, H Fan, J Zhang… - Expert Systems with …, 2024 - Elsevier
An original swarm-based, bio-inspired metaheuristic algorithm, named electric eel foraging
optimization (EEFO) is developed and tested in this work. EEFO draws inspiration from the …

Review of swarm intelligence-based feature selection methods

M Rostami, K Berahmand, E Nasiri… - … Applications of Artificial …, 2021 - Elsevier
In the past decades, the rapid growth of computer and database technologies has led to the
rapid growth of large-scale datasets. On the other hand, data mining applications with high …

A survey on swarm intelligence approaches to feature selection in data mining

BH Nguyen, B Xue, M Zhang - Swarm and Evolutionary Computation, 2020 - Elsevier
One of the major problems in Big Data is a large number of features or dimensions, which
causes the issue of “the curse of dimensionality” when applying machine learning …

Boosted binary Harris hawks optimizer and feature selection

Y Zhang, R Liu, X Wang, H Chen, C Li - Engineering with Computers, 2021 - Springer
Feature selection is a required preprocess stage in most of the data mining tasks. This paper
presents an improved Harris hawks optimization (HHO) to find high-quality solutions for …

An efficient hybrid sine-cosine Harris hawks optimization for low and high-dimensional feature selection

K Hussain, N Neggaz, W Zhu, EH Houssein - Expert Systems with …, 2021 - Elsevier
Feature selection, an optimization problem, becomes an important pre-process tool in data
mining, which simultaneously aims at minimizing feature-size and maximizing model …

An efficient binary salp swarm algorithm with crossover scheme for feature selection problems

H Faris, MM Mafarja, AA Heidari, I Aljarah… - Knowledge-Based …, 2018 - Elsevier
Searching for the (near) optimal subset of features is a challenging problem in the process of
feature selection (FS). In the literature, Swarm Intelligence (SI) algorithms show superior …

Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies

AD Li, B Xue, M Zhang - Applied Soft Computing, 2021 - Elsevier
Feature selection (FS) is an important preprocessing technique for dimensionality reduction
in classification problems. Particle swarm optimization (PSO) algorithms have been widely …

[HTML][HTML] Integration of multi-objective PSO based feature selection and node centrality for medical datasets

M Rostami, S Forouzandeh, K Berahmand, M Soltani - Genomics, 2020 - Elsevier
In the past decades, the rapid growth of computer and database technologies has led to the
rapid growth of large-scale medical datasets. On the other, medical applications with high …