Local well-posedness for the motion of a compressible gravity water wave with vorticity

C Luo, J Zhang - Journal of Differential Equations, 2022 - Elsevier
In this paper we prove the local well-posedness (LWP) for the 3D compressible Euler
equations describing the motion of a liquid in an unbounded initial domain with moving …

Nonlinear modulational instabililty of the Stokes waves in 2d full water waves

G Chen, Q Su - Communications in Mathematical Physics, 2023 - Springer
The well-known Stokes waves refer to periodic traveling waves under the gravity at the free
surface of a two dimensional full water wave system. In this paper, we prove that small …

On the Transition of the Rayleigh-Taylor Instability in 2d Water Waves with Point Vortices

Q Su - Annals of PDE, 2023 - Springer
In this paper, by considering 2d water waves with a pair of point vortices, we prove the
existence of water waves with sign-changing Taylor sign coefficients. That is, the strong …

Long time behavior of 2D water waves with point vortices

Q Su - Communications in Mathematical Physics, 2020 - Springer
In this paper, we study the motion of the two dimensional inviscid incompressible, infinite
depth water waves with point vortices in the fluid. We show that the Taylor sign condition-∂ …

Long time regularity for 3d gravity waves with vorticity

D Ginsberg, F Pusateri - arXiv preprint arXiv:2401.10096, 2024 - arxiv.org
We consider the Cauchy problem for the full free boundary Euler equations in $3 $ d with an
initial small velocity of size $ O (\epsilon_0) $, in a moving domain which is initially an $ O …

On the transition of the Rayleigh-Taylor instability in 2d water waves

Q Su - arXiv preprint arXiv:2007.13849, 2020 - arxiv.org
In this paper we prove the existence of water waves with sign-changing Taylor sign
coefficients, that is, the strong Taylor sign holds initially, while breaks down at a later time …

On the time of existence of solutions of the Euler–Korteweg system

C Audiard - Annales de la Faculté des sciences de Toulouse …, 2021 - numdam.org
The Euler–Korteweg system is a dispersive perturbation of the usual compressible Euler
equations. In dimension at least three, under a natural stability condition on the pressure, the …

Quelques résultats autour de l'équation de Schrödinger

C Audiard - 2020 - hal.science
Ce manuscrit décrit quelques résultats d'analyse des équations aux dérivées partielles qui
ont pour fil rouge l'équation de Schrödinger non linéaire. Les chapitres 1 et 2 sont dédiés à …