A comprehensive overview of large language models

H Naveed, AU Khan, S Qiu, M Saqib, S Anwar… - arXiv preprint arXiv …, 2023 - arxiv.org
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in
natural language processing tasks and beyond. This success of LLMs has led to a large …

Challenges and applications of large language models

J Kaddour, J Harris, M Mozes, H Bradley… - arXiv preprint arXiv …, 2023 - arxiv.org
Large Language Models (LLMs) went from non-existent to ubiquitous in the machine
learning discourse within a few years. Due to the fast pace of the field, it is difficult to identify …

A survey of large language models

WX Zhao, K Zhou, J Li, T Tang, X Wang, Y Hou… - arXiv preprint arXiv …, 2023 - arxiv.org
Language is essentially a complex, intricate system of human expressions governed by
grammatical rules. It poses a significant challenge to develop capable AI algorithms for …

Openassistant conversations-democratizing large language model alignment

A Köpf, Y Kilcher, D von Rütte… - Advances in …, 2024 - proceedings.neurips.cc
Aligning large language models (LLMs) with human preferences has proven to drastically
improve usability and has driven rapid adoption as demonstrated by ChatGPT. Alignment …

Language models can solve computer tasks

G Kim, P Baldi, S McAleer - Advances in Neural Information …, 2024 - proceedings.neurips.cc
Agents capable of carrying out general tasks on a computer can improve efficiency and
productivity by automating repetitive tasks and assisting in complex problem-solving. Ideally …

Augmented language models: a survey

G Mialon, R Dessì, M Lomeli, C Nalmpantis… - arXiv preprint arXiv …, 2023 - arxiv.org
This survey reviews works in which language models (LMs) are augmented with reasoning
skills and the ability to use tools. The former is defined as decomposing a potentially …

Inference-time intervention: Eliciting truthful answers from a language model

K Li, O Patel, F Viégas, H Pfister… - Advances in Neural …, 2024 - proceedings.neurips.cc
Abstract We introduce Inference-Time Intervention (ITI), a technique designed to enhance
the" truthfulness" of large language models (LLMs). ITI operates by shifting model activations …

Scaling laws for reward model overoptimization

L Gao, J Schulman, J Hilton - International Conference on …, 2023 - proceedings.mlr.press
In reinforcement learning from human feedback, it is common to optimize against a reward
model trained to predict human preferences. Because the reward model is an imperfect …

Taxonomy of risks posed by language models

L Weidinger, J Uesato, M Rauh, C Griffin… - Proceedings of the …, 2022 - dl.acm.org
Responsible innovation on large-scale Language Models (LMs) requires foresight into and
in-depth understanding of the risks these models may pose. This paper develops a …

A generalist agent

S Reed, K Zolna, E Parisotto, SG Colmenarejo… - arXiv preprint arXiv …, 2022 - arxiv.org
Inspired by progress in large-scale language modeling, we apply a similar approach
towards building a single generalist agent beyond the realm of text outputs. The agent …