Null ideals of subsets of matrix rings over fields

NJ Werner - Linear Algebra and its Applications, 2022 - Elsevier
Let M n (F) denote the ring of n× n matrices with entries from a field F. For a subset S⊆ M n
(F), the null ideal N (S) of S is the set of all polynomials f with coefficients in M n (F) such that …

[HTML][HTML] Decomposition of integer-valued polynomial algebras

G Peruginelli, NJ Werner - Journal of Pure and Applied Algebra, 2018 - Elsevier
Let D be a commutative domain with field of fractions K, let A be a torsion-free D-algebra,
and let B be the extension of A to a K-algebra. The set of integer-valued polynomials on A is …

Integer-valued polynomials over block matrix algebras

J Sedighi Hafshejani, AR Naghipour… - Journal of Algebra …, 2020 - World Scientific
In this paper, we state a generalization of the ring of integer-valued polynomials over upper
triangular matrix rings. The set of integer-valued polynomials over some block matrix rings is …

Integer-valued polynomials over subsets of matrix rings

J Sedighi Hafshejani, AR Naghipour… - Communications in …, 2019 - Taylor & Francis
In this article, we study the ring of integer-valued polynomials over some matrix rings. Let D
be an integral domain with the field of fractions K and I be an ideal of D. We introduce Int (M …

Counting core sets in matrix rings over finite fields

R Rissner, NJ Werner - arXiv preprint arXiv:2405.04106, 2024 - arxiv.org
Let $ R $ be a commutative ring and $ M_n (R) $ be the ring of $ n\times n $ matrices with
entries from $ R $. For each $ S\subseteq M_n (R) $, we consider its (generalized) null ideal …

Integer-valued polynomials on subsets of quaternion algebras

NJ Werner - arXiv preprint arXiv:2412.20609, 2024 - arxiv.org
Let $ R $ be either the ring of Lipschitz quaternions, or the ring of Hurwitz quaternions. Then,
$ R $ is a subring of the division ring $\mathbb {D} $ of rational quaternions. For …

Integer-valued polynomials on subsets of upper triangular matrix rings

AR Naghipour, J Sedighi Hafshejani - Communications in Algebra, 2024 - Taylor & Francis
S. Frisch, showed that the integer-valued polynomials on upper triangular matrix ring Int T n
(K)(T n (D)):={f∈ T n (K)[x]| f (T n (D))⊆ T n (D)} is a ring, where D is an integral domain with …

Integer-valued polynomials over matrix rings of number fields

JS Hafshejani, AR Naghipour - Bulletin of the Iranian Mathematical Society, 2021 - Springer
In this paper, we study the ring of integer-valued polynomials Int (M_n (O _K)):={f ∈ M_n (K)
x~|~ f (M_n (O _K)) ⊆ M_n (O _K)\} Int (M n (OK)):= f∈ M n (K) x| f (M n (OK))⊆ M n (OK) …

Some results on integer-valued polynomials over modules

AR Naghipour, JS Hafshejani - Bulletin of the Korean Mathematical …, 2020 - koreascience.kr
Let M be a module over a commutative ring R. In this paper, we study Int (R, M), the module
of integer-valued polynomials on M over R, and Int M (R), the ring of integer-valued …

Integer-valued skew polynomials

NJ Werner - Journal of Algebra and Its Applications, 2021 - World Scientific
For a commutative integral domain D with field of fractions K, the ring of integer-valued
polynomials on D is Int (D)={f∈ K [x]| f (a)∈ D for all a∈ D}. In this paper, we extend this …