[HTML][HTML] Nullity conditions in paracontact geometry

BC Montano, IK Erken, C Murathan - Differential Geometry and its …, 2012 - Elsevier
The paper is a complete study of paracontact metric manifolds for which the Reeb vector
field of the underlying contact structure satisfies a nullity condition (the condition (1.2), for …

Geometric structures associated to a contact metric (κ, μ)-space

B Cappelletti Montano, L Di Terlizzi - Pacific journal of mathematics, 2010 - msp.org
We prove that any contact metric (κ, μ)-space (M, φ, ξ, η, g) admits a canonical paracontact
metric structure that is compatible with the contact form η. We study this canonical …

[HTML][HTML] Sasaki–Einstein and paraSasaki–Einstein metrics from (κ, μ)-structures

B Cappelletti-Montano, A Carriazo… - Journal of Geometry and …, 2013 - Elsevier
We prove that every contact metric (κ, μ)-space admits a canonical η-Einstein Sasakian or η-
Einstein paraSasakian metric. An explicit expression for the curvature tensor fields of those …

A survey of Riemannian contact geometry

DE Blair - Complex Manifolds, 2019 - degruyter.com
This survey is a presentation of the five lectures on Riemannian contact geometry that the
author gave at the conference “RIEMain in Contact”, 18-22 June 2018 in Cagliari, Sardinia …

Bi-Legendrian structures and paracontact geometry

B Cappelletti Montano - … Journal of Geometric Methods in Modern …, 2009 - World Scientific
We study the interplays between paracontact geometry and the theory of bi-Legendrian
manifolds. We interpret the bi-Legendrian connection of a bi-Legendrian manifold M as the …

Invariant submanifolds of contact (κ, μ)-manifolds

BC Montano, L Di Terlizzi, MM Tripathi - Glasgow Mathematical …, 2008 - cambridge.org
Invariant submanifolds of contact (κ, μ)-manifolds are studied. Our main result is that any
invariant submanifold of a non-Sasakian contact (κ, μ)-manifold is always totally geodesic …

Bi-paracontact structures and Legendre foliations

BC Montano - Kodai Mathematical Journal, 2010 - jstage.jst.go.jp
We study almost bi-paracontact structures on contact manifolds. We prove that if an almost bi-
paracontact structure is defined on a contact manifold šM, hŽ, then under some natural …

Sasaki-Einstein and ParaSasaki-Einstein Metrics from (\kappa,\mu)-structures

BC Montano, A Carriazo, V Martín-Molina - arXiv preprint arXiv:1109.6248, 2011 - arxiv.org
We prove that any non-Sasakian contact metric (\kappa,\mu)-space admits a canonical\eta-
Einstein Sasakian or\eta-Einstein paraSasakian metric. An explicit expression for the …

Some remarks on the generalized Tanaka-Webster connection of a contact metric manifold

BC Montano - The Rocky Mountain Journal of Mathematics, 2010 - JSTOR
We find necessary and sufficient conditions for the bi-Legendrian connection∇ associated
to a bi-Legendrian structure (ℱ, G) on a contact metric manifold (M, ø, ξ, η, g) being a metric …

On the classification of contact metric‐spaces via tangent hyperquadric bundles

E Loiudice, A Lotta - Mathematische Nachrichten, 2018 - Wiley Online Library
On the classification of contact metric ‐spaces via tangent hyperquadric bundles - Loiudice - 2018
- Mathematische Nachrichten - Wiley Online Library Skip to Article Content Skip to Article …