A comprehensive survey on trustworthy graph neural networks: Privacy, robustness, fairness, and explainability

E Dai, T Zhao, H Zhu, J Xu, Z Guo, H Liu, J Tang… - Machine Intelligence …, 2024 - Springer
Graph neural networks (GNNs) have made rapid developments in the recent years. Due to
their great ability in modeling graph-structured data, GNNs are vastly used in various …

Understanding graph embedding methods and their applications

M Xu - SIAM Review, 2021 - SIAM
Graph analytics can lead to better quantitative understanding and control of complex
networks, but traditional methods suffer from the high computational cost and excessive …

S2gae: Self-supervised graph autoencoders are generalizable learners with graph masking

Q Tan, N Liu, X Huang, SH Choi, L Li, R Chen… - Proceedings of the …, 2023 - dl.acm.org
Self-supervised learning (SSL) has been demonstrated to be effective in pre-training models
that can be generalized to various downstream tasks. Graph Autoencoder (GAE), an …

Auto-keras: An efficient neural architecture search system

H Jin, Q Song, X Hu - Proceedings of the 25th ACM SIGKDD …, 2019 - dl.acm.org
Neural architecture search (NAS) has been proposed to automatically tune deep neural
networks, but existing search algorithms, eg, NASNet, PNAS, usually suffer from expensive …

Review of the state of the art of deep learning for plant diseases: A broad analysis and discussion

RI Hasan, SM Yusuf, L Alzubaidi - Plants, 2020 - mdpi.com
Deep learning (DL) represents the golden era in the machine learning (ML) domain, and it
has gradually become the leading approach in many fields. It is currently playing a vital role …

Sparse-interest network for sequential recommendation

Q Tan, J Zhang, J Yao, N Liu, J Zhou, H Yang… - Proceedings of the 14th …, 2021 - dl.acm.org
Recent methods in sequential recommendation focus on learning an overall embedding
vector from a user's behavior sequence for the next-item recommendation. However, from …

Stgsn—a spatial–temporal graph neural network framework for time-evolving social networks

S Min, Z Gao, J Peng, L Wang, K Qin, B Fang - Knowledge-Based Systems, 2021 - Elsevier
Abstract Social Network Analysis (SNA) has been a popular field of research since the early
1990s. Law enforcement agencies have been utilizing it as a tool for intelligence gathering …

Adversarial machine learning in wireless communications using RF data: A review

D Adesina, CC Hsieh, YE Sagduyu… - … Surveys & Tutorials, 2022 - ieeexplore.ieee.org
Machine learning (ML) provides effective means to learn from spectrum data and solve
complex tasks involved in wireless communications. Supported by recent advances in …

Distributed graph neural network training: A survey

Y Shao, H Li, X Gu, H Yin, Y Li, X Miao… - ACM Computing …, 2024 - dl.acm.org
Graph neural networks (GNNs) are a type of deep learning models that are trained on
graphs and have been successfully applied in various domains. Despite the effectiveness of …

Bring your own view: Graph neural networks for link prediction with personalized subgraph selection

Q Tan, X Zhang, N Liu, D Zha, L Li, R Chen… - Proceedings of the …, 2023 - dl.acm.org
Graph neural networks (GNNs) have received remarkable success in link prediction
(GNNLP) tasks. Existing efforts first predefine the subgraph for the whole dataset and then …