Evolutionary computation for feature selection in classification: A comprehensive survey of solutions, applications and challenges

X Song, Y Zhang, W Zhang, C He, Y Hu, J Wang… - Swarm and Evolutionary …, 2024 - Elsevier
Feature selection (FS), as one of the most significant preprocessing techniques in the fields
of machine learning and pattern recognition, has received great attention. In recent years …

A review of unsupervised band selection techniques: Land cover classification for hyperspectral earth observation data

RN Patro, S Subudhi, PK Biswal… - IEEE Geoscience and …, 2021 - ieeexplore.ieee.org
A hyperspectral image (HSI) is a collection of several narrow-band images that span a wide
spectral range. Each band reflects the same scene, composed of various objects imaged at …

Three-dimensional singular spectrum analysis for precise land cover classification from UAV-borne hyperspectral benchmark datasets

H Fu, G Sun, L Zhang, A Zhang, J Ren, X Jia… - ISPRS Journal of …, 2023 - Elsevier
The precise classification of land covers with hyperspectral imagery (HSI) is a major
research-focused topic in remote sensing, especially using unmanned aerial vehicle (UAV) …

A novel band selection and spatial noise reduction method for hyperspectral image classification

H Fu, A Zhang, G Sun, J Ren, X Jia… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
As an essential reprocessing method, dimensionality reduction (DR) can reduce the data
redundancy and improve the performance of hyperspectral image (HSI) classification. A …

A dual global–local attention network for hyperspectral band selection

K He, W Sun, G Yang, X Meng, K Ren… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
This article proposes a dual global–local attention network (DGLAnet), which is an end-to-
end unsupervised band selection (UBS) method that fully utilizes spatial and spectral …

Spatial and spectral structure preserved self-representation for unsupervised hyperspectral band selection

C Tang, J Wang, X Zheng, X Liu, W Xie… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
As an effective manner to reduce data redundancy and processing inconvenience,
hyperspectral band selection aims to select a subset of informative and discriminative bands …

Hyperspectral band selection via region-aware latent features fusion based clustering

J Wang, C Tang, Z Li, X Liu, W Zhang, E Zhu, L Wang - Information Fusion, 2022 - Elsevier
Band selection is one of the most effective methods to reduce the band redundancy of
hyperspectral images (HSIs). Most existing band selection methods tend to regard each …

Novel hyperbolic clustering-based band hierarchy (HCBH) for effective unsupervised band selection of hyperspectral images

H Sun, L Zhang, J Ren, H Huang - Pattern Recognition, 2022 - Elsevier
For dimensionality reduction of HSI, many clustering-based unsupervised band selection
(UBS) methods have been proposed due to their superiority of reducing the high …

[HTML][HTML] Hyperspectral image-based vegetation index (HSVI): A new vegetation index for urban ecological research

G Sun, Z Jiao, A Zhang, F Li, H Fu, Z Li - International Journal of Applied …, 2021 - Elsevier
Accurately monitoring the quantity and quality of urban vegetation contributes to regional
greening efforts and improves the understanding of vegetation's impact on the environment …

Unsupervised band selection of medical hyperspectral images guided by data gravitation and weak correlation

C Zhang, Z Zhang, D Yu, Q Cheng, S Shan, M Li… - Computer Methods and …, 2023 - Elsevier
Abstract Background and Objective Medical hyperspectral images (MHSIs) are used for a
contact-free examination of patients without harmful radiation. However, high-dimensionality …