Geometry-informed irreversible perturbations for accelerated convergence of Langevin dynamics

BJ Zhang, YM Marzouk, K Spiliopoulos - Statistics and Computing, 2022 - Springer
We introduce a novel geometry-informed irreversible perturbation that accelerates
convergence of the Langevin algorithm for Bayesian computation. It is well documented that …

Adapting the Gibbs sampler

C Chimisov, K Latuszynski, G Roberts - arXiv preprint arXiv:1801.09299, 2018 - arxiv.org
The popularity of Adaptive MCMC has been fueled on the one hand by its success in
applications, and on the other hand, by mathematically appealing and computationally …

Reversible and non-reversible Markov chain Monte Carlo algorithms for reservoir simulation problems

P Dobson, I Fursov, G Lord, M Ottobre - Computational Geosciences, 2020 - Springer
We compare numerically the performance of reversible and non-reversible Markov Chain
Monte Carlo algorithms for high-dimensional oil reservoir problems; because of the nature of …

On irreversible metropolis sampling related to langevin dynamics

Z Song, Z Tan - SIAM Journal on Scientific Computing, 2022 - SIAM
There has been considerable interest in designing Markov chain Monte Carlo algorithms by
exploiting numerical methods for Langevin dynamics, which includes Hamiltonian dynamics …

Analysis of multiscale integrators for multiple attractors and irreversible Langevin samplers

J Lu, K Spiliopoulos - Multiscale Modeling & Simulation, 2018 - SIAM
We study multiscale integrator numerical schemes for a class of stiff stochastic differential
equations (SDEs). We consider multiscale SDEs with potentially multiple attractors that …

Accelerating Convergence of Langevin Dynamics via Adaptive Irreversible Perturbations

Z Wu, Z Huang, S Wu, Z Yu, L Zhu, L Yang - Mathematics, 2023 - mdpi.com
Irreversible perturbations in Langevin dynamics have been widely recognized for their role
in accelerating convergence in simulations of multi-modal distributions π (θ). A commonly …

Transport map unadjusted Langevin algorithms: learning and discretizing perturbed samplers

BJ Zhang, YM Marzouk, K Spiliopoulos - arXiv preprint arXiv:2302.07227, 2023 - arxiv.org
Langevin dynamics are widely used in sampling high-dimensional, non-Gaussian
distributions whose densities are known up to a normalizing constant. In particular, there is …

Méthodes numériques pour la simulation d'équations aux dérivées partielles stochastiques non-linéaires en condensation de Bose-Einstein

R Poncet - 2017 - pastel.hal.science
Cette thèse porte sur l'étude de méthodes numériques pour l'analyse de deux modèles
stochastiques apparaissant dans le contexte de la condensation de Bose-Einstein. Ceux-ci …

Efficient Sampling Methods of, by, and for Stochastic Dynamical Systems

BJ Zhang - 2022 - dspace.mit.edu
This thesis presents new methodologies that lie at the intersection of computational statistics
and computational dynamics. Stochastic differential equations (SDEs) are used to model a …

[PDF][PDF] Novel perturbations for accelerating Langevin samplers

K Spiliopoulos - math.umd.edu
Novel perturbations for accelerating Langevin samplers Page 1 Novel perturbations for
accelerating Langevin samplers Konstantinos Spiliopoulos Department of Mathematics & …