A review of domain adaptation without target labels

WM Kouw, M Loog - IEEE transactions on pattern analysis and …, 2019 - ieeexplore.ieee.org
Domain adaptation has become a prominent problem setting in machine learning and
related fields. This review asks the question: How can a classifier learn from a source …

Causal machine learning for healthcare and precision medicine

P Sanchez, JP Voisey, T Xia… - Royal Society …, 2022 - royalsocietypublishing.org
Causal machine learning (CML) has experienced increasing popularity in healthcare.
Beyond the inherent capabilities of adding domain knowledge into learning systems, CML …

Towards out-of-distribution generalization: A survey

J Liu, Z Shen, Y He, X Zhang, R Xu, H Yu… - arXiv preprint arXiv …, 2021 - arxiv.org
Traditional machine learning paradigms are based on the assumption that both training and
test data follow the same statistical pattern, which is mathematically referred to as …

Toward causal representation learning

B Schölkopf, F Locatello, S Bauer, NR Ke… - Proceedings of the …, 2021 - ieeexplore.ieee.org
The two fields of machine learning and graphical causality arose and are developed
separately. However, there is, now, cross-pollination and increasing interest in both fields to …

Causality inspired representation learning for domain generalization

F Lv, J Liang, S Li, B Zang, CH Liu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Abstract Domain generalization (DG) is essentially an out-of-distribution problem, aiming to
generalize the knowledge learned from multiple source domains to an unseen target …

Self-supervised learning with data augmentations provably isolates content from style

J Von Kügelgen, Y Sharma, L Gresele… - Advances in neural …, 2021 - proceedings.neurips.cc
Self-supervised representation learning has shown remarkable success in a number of
domains. A common practice is to perform data augmentation via hand-crafted …

In search of lost domain generalization

I Gulrajani, D Lopez-Paz - arXiv preprint arXiv:2007.01434, 2020 - arxiv.org
The goal of domain generalization algorithms is to predict well on distributions different from
those seen during training. While a myriad of domain generalization algorithms exist …

Fishr: Invariant gradient variances for out-of-distribution generalization

A Rame, C Dancette, M Cord - International Conference on …, 2022 - proceedings.mlr.press
Learning robust models that generalize well under changes in the data distribution is critical
for real-world applications. To this end, there has been a growing surge of interest to learn …

Learning invariant graph representations for out-of-distribution generalization

H Li, Z Zhang, X Wang, W Zhu - Advances in Neural …, 2022 - proceedings.neurips.cc
Graph representation learning has shown effectiveness when testing and training graph
data come from the same distribution, but most existing approaches fail to generalize under …

Learning substructure invariance for out-of-distribution molecular representations

N Yang, K Zeng, Q Wu, X Jia… - Advances in Neural …, 2022 - proceedings.neurips.cc
Molecule representation learning (MRL) has been extensively studied and current methods
have shown promising power for various tasks, eg, molecular property prediction and target …