On elliptic operators with Steklov condition perturbed by Dirichlet condition on a small part of boundary

DI Borisov, G Cardone, GA Chechkin… - Calculus of Variations …, 2021 - Springer
We consider a boundary value problem for a homogeneous elliptic equation with an
inhomogeneous Steklov boundary condition. The problem involves a singular perturbation …

Sloshing, Steklov and corners: Asymptotics of sloshing eigenvalues

M Levitin, L Parnovski, I Polterovich… - Journal d'Analyse …, 2022 - Springer
In the present paper we develop an approach to obtain sharp spectral asymptotics for
Steklov type problems on planar domains with corners. Our main focus is on the two …

Sloshing, Steklov and corners: asymptotics of Steklov eigenvalues for curvilinear polygons

M Levitin, L Parnovski, I Polterovich… - Proceedings of the …, 2022 - Wiley Online Library
We obtain asymptotic formulae for the Steklov eigenvalues and eigenfunctions of curvilinear
polygons in terms of their side lengths and angles. These formulae are quite precise: the …

Sloshing, Steklov and corners: asymptotics of sloshing eigenvalues

M Levitin, L Parnovski, I Polterovich… - arXiv preprint arXiv …, 2017 - arxiv.org
In the present paper we develop an approach to obtain sharp spectral asymptotics for
Steklov type problems on planar domains with corners. Our main focus is on the two …

On the first Steklov-Dirichlet eigenvalue on eccentric annuli in general dimensions

J Hong, M Lim, DH Seo - arXiv preprint arXiv:2309.09587, 2023 - arxiv.org
We consider the Steklov-Dirichlet eigenvalue problem on eccentric annuli in Euclidean
space of general dimensions. In recent work by the same authors of this paper [21], a limiting …

[HTML][HTML] Operator estimates for elliptic problem with rapidly alternating Steklov boundary condition

AG Chechkina, C D'Apice, U De Maio - Journal of Computational and …, 2020 - Elsevier
In the paper we study boundary-value and spectral problems for the Laplacian operator in a
domain with a smooth boundary. It is assumed that on a small part of the boundary there is a …

[HTML][HTML] Applications of possibly hidden symmetry to Steklov and mixed Steklov problems on surfaces

T Arias-Marco, EB Dryden, CS Gordon… - Journal of Mathematical …, 2024 - Elsevier
We consider three different questions related to the Steklov and mixed Steklov problems on
surfaces. These questions are connected by the techniques that we use to study them, which …

Steklov-Dirichlet spectrum: stability, optimization and continuity of eigenvalues

M Michetti - arXiv preprint arXiv:2202.08664, 2022 - arxiv.org
In this paper we study the Steklov-Dirichlet eigenvalues $\lambda_k (\Omega,\Gamma_S) $,
where $\Omega\subset\mathbb {R}^ d $ is a domain and $\Gamma_S\subset\partial\Omega …

Approximation of the first Steklov-Dirichlet eigenvalue on eccentric spherical shells in general dimensions

J Hong, W Lee, M Lim - arXiv preprint arXiv:2407.03643, 2024 - arxiv.org
We study the first Steklov-Dirichlet eigenvalue on eccentric spherical shells in $\mathbb
{R}^{n+ 2} $ with $ n\geq 1$, imposing the Steklov condition on the outer boundary sphere …

Bounds for higher Steklov and mixed Steklov Neumann eigenvalues on domains with holes

S Basak, S Verma - arXiv preprint arXiv:2412.17124, 2024 - arxiv.org
In this article, we study Steklov eigenvalues and mixed Steklov Neumann eigenvalues on a
smooth bounded domain in $\mathbb {R}^{n} $, $ n\geq 2$, having a spherical hole. We …