Recent advancements in end-to-end autonomous driving using deep learning: A survey

PS Chib, P Singh - IEEE Transactions on Intelligent Vehicles, 2023 - ieeexplore.ieee.org
End-to-End driving is a promising paradigm as it circumvents the drawbacks associated with
modular systems, such as their overwhelming complexity and propensity for error …

A review of tracking and trajectory prediction methods for autonomous driving

F Leon, M Gavrilescu - Mathematics, 2021 - mdpi.com
This paper provides a literature review of some of the most important concepts, techniques,
and methodologies used within autonomous car systems. Specifically, we focus on two …

A survey on trajectory-prediction methods for autonomous driving

Y Huang, J Du, Z Yang, Z Zhou… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
In order to drive safely in a dynamic environment, autonomous vehicles should be able to
predict the future states of traffic participants nearby, especially surrounding vehicles, similar …

Query-centric trajectory prediction

Z Zhou, J Wang, YH Li… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Predicting the future trajectories of surrounding agents is essential for autonomous vehicles
to operate safely. This paper presents QCNet, a modeling framework toward pushing the …

Motion transformer with global intention localization and local movement refinement

S Shi, L Jiang, D Dai, B Schiele - Advances in Neural …, 2022 - proceedings.neurips.cc
Predicting multimodal future behavior of traffic participants is essential for robotic vehicles to
make safe decisions. Existing works explore to directly predict future trajectories based on …

Densetnt: End-to-end trajectory prediction from dense goal sets

J Gu, C Sun, H Zhao - Proceedings of the IEEE/CVF …, 2021 - openaccess.thecvf.com
Due to the stochasticity of human behaviors, predicting the future trajectories of road agents
is challenging for autonomous driving. Recently, goal-based multi-trajectory prediction …

Vad: Vectorized scene representation for efficient autonomous driving

B Jiang, S Chen, Q Xu, B Liao, J Chen… - Proceedings of the …, 2023 - openaccess.thecvf.com
Autonomous driving requires a comprehensive understanding of the surrounding
environment for reliable trajectory planning. Previous works rely on dense rasterized scene …

Large scale interactive motion forecasting for autonomous driving: The waymo open motion dataset

S Ettinger, S Cheng, B Caine, C Liu… - Proceedings of the …, 2021 - openaccess.thecvf.com
As autonomous driving systems mature, motion forecasting has received increasing
attention as a critical requirement for planning. Of particular importance are interactive …

Agentformer: Agent-aware transformers for socio-temporal multi-agent forecasting

Y Yuan, X Weng, Y Ou… - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
Predicting accurate future trajectories of multiple agents is essential for autonomous systems
but is challenging due to the complex interaction between agents and the uncertainty in …

Multipath++: Efficient information fusion and trajectory aggregation for behavior prediction

B Varadarajan, A Hefny, A Srivastava… - … on Robotics and …, 2022 - ieeexplore.ieee.org
Predicting the future behavior of road users is one of the most challenging and important
problems in autonomous driving. Applying deep learning to this problem requires fusing …