Kähler–Ricci flow, Kähler–Einstein metric, and K–stability

X Chen, S Sun, B Wang - Geometry & Topology, 2018 - msp.org
We prove the existence of a Kähler–Einstein metric on a K–stable Fano manifold using the
recent compactness result on Kähler–Ricci flows. The key ingredient is an algebrogeometric …

Compactness theory of the space of super Ricci flows

RH Bamler - Inventiones mathematicae, 2023 - Springer
We develop a compactness theory for super Ricci flows, which lays the foundations for the
partial regularity theory in Bamler (Structure Theory of Non-collapsed Limits of Ricci Flows …

Structure theory of non-collapsed limits of Ricci flows

RH Bamler - arXiv preprint arXiv:2009.03243, 2020 - arxiv.org
In this paper we characterize non-collapsed limits of Ricci flows. We show that such limits
are smooth away from a set of codimension $\geq 4$ in the parabolic sense and that the …

Sasaki–Einstein metrics and K–stability

T Collins, G Székelyhidi - Geometry & Topology, 2019 - msp.org
We show that a polarized affine variety with an isolated singularity admits a Ricci flat Kähler
cone metric if and only if it is K–stable. This generalizes the Chen–Donaldson–Sun solution …

The existence of the Kähler–Ricci soliton degeneration

H Blum, Y Liu, C Xu, Z Zhuang - Forum of Mathematics, Pi, 2023 - cambridge.org
We prove an algebraic version of the Hamilton–Tian conjecture for all log Fano pairs. More
precisely, we show that any log Fano pair admits a canonical two-step degeneration to a …

[HTML][HTML] Heat kernel and curvature bounds in Ricci flows with bounded scalar curvature

RH Bamler, QS Zhang - Advances in Mathematics, 2017 - Elsevier
In this paper we analyze Ricci flows on which the scalar curvature is globally or locally
bounded from above by a uniform or time-dependent constant. On such Ricci flows we …

Metaverse, SED model, and new theory of value

J Wang, T Wang, Y Shi, D Xu, Y Chen, J Wu - Complexity, 2022 - Wiley Online Library
The metaverse concept constructs a virtual world parallel to the real world. The social
economic dynamics (SED) model establishes a systematic model for social economic …

Algebraic uniqueness of K\"{a} hler-Ricci flow limits and optimal degenerations of Fano varieties

J Han, C Li - arXiv preprint arXiv:2009.01010, 2020 - arxiv.org
We prove that for any $\mathbb {Q} $-Fano variety $ X $, the special $\mathbb {R} $-test
configuration that minimizes the $ H $-functional is unique and has a K-semistable $\mathbb …

The Kähler–Ricci flow and optimal degenerations

R Dervan, G Székelyhidi - Journal of Differential Geometry, 2020 - projecteuclid.org
We prove that on Fano manifolds, the Kähler–Ricci flow produces a “most destabilising”
degeneration, with respect to a new stability notion related to the $ H $-functional. This …

KAWA lecture notes on the Kähler–Ricci flow

V Tosatti - Annales de la Faculté des sciences de …, 2018 - afst.centre-mersenne.org
These lecture notes provide an introduction to the study of the Kähler–Ricci flow on compact
Kähler manifolds, and a detailed exposition of some recent developments. RÉSUMÉ.— Ces …