Deep Learning Prostate MRI Segmentation Accuracy and Robustness: A Systematic Review

MK Fassia, A Balasubramanian, S Woo… - Radiology: Artificial …, 2024 - pubs.rsna.org
Purpose To investigate the accuracy and robustness of prostate segmentation using deep
learning across various training data sizes, MRI vendors, prostate zones, and testing …

[HTML][HTML] Segmentation of the prostate, its zones, anterior fibromuscular stroma, and urethra on the MRIs and multimodality image fusion using U-Net model

SM Rezaeijo, SJ Nesheli, MF Serj… - Quantitative Imaging in …, 2022 - ncbi.nlm.nih.gov
Background Due to the large variability in the prostate gland of different patient groups,
manual segmentation is time-consuming and subject to inter-and intra-reader variations …

A brief review of artificial intelligence in genitourinary oncological imaging

EC Yilmaz, MJ Belue, B Turkbey… - Canadian …, 2023 - journals.sagepub.com
Genitourinary (GU) system is among the most commonly involved malignancy sites in the
human body. Imaging plays a crucial role not only in diagnosis of cancer but also in disease …

SECP-Net: SE-Connection Pyramid Network for Segmentation of Organs at Risk with Nasopharyngeal Carcinoma

Z Huang, X Yang, S Huang, L Guo - Bioengineering, 2023 - mdpi.com
Nasopharyngeal carcinoma (NPC) is a kind of malignant tumor. The accurate and automatic
segmentation of computed tomography (CT) images of organs at risk (OAR) is clinically …

[HTML][HTML] The use of deep learning in interventional radiotherapy (brachytherapy): a review with a focus on open source and open data

T Fechter, I Sachpazidis, D Baltas - Zeitschrift für Medizinische Physik, 2024 - Elsevier
Deep learning advanced to one of the most important technologies in almost all medical
fields. Especially in areas, related to medical imaging it plays a big role. However, in …

Automated prostate gland segmentation in challenging clinical cases: comparison of three artificial intelligence methods

LA Johnson, SA Harmon, EC Yilmaz, Y Lin… - Abdominal …, 2024 - Springer
Objective Automated methods for prostate segmentation on MRI are typically developed
under ideal scanning and anatomical conditions. This study evaluates three different …

Pretreatment information–aided automatic segmentation for online magnetic resonance imaging‐guided prostate radiotherapy

B Yang, Y Liu, J Zhu, N Lu, J Dai, K Men - Medical Physics, 2024 - Wiley Online Library
Background It is necessary to contour regions of interest (ROIs) for online magnetic
resonance imaging (MRI)‐guided adaptive radiotherapy (MRIgART). These updated …

[HTML][HTML] Анализ подходов к глубокому обучению для автоматизированного выделения и сегментации предстательной железы: обзор литературы

АЭ Талышинский, БГ Гулиев, ИГ Камышанская… - …, 2023 - cyberleninka.ru
Введение. Определение границ предстательной железы является начальным шагом в
понимании состояния органа и в основном выполняется вручную, что занимает …

[HTML][HTML] Analysis of deep learning approaches for automated prostate segmentation: literature review

AE Talyshinskii, BG Guliev… - Cancer …, 2023 - oncourology.abvpress.ru
Background. Delineation of the prostate boundaries represents the initial step in
understanding the state of the whole organ and is mainly manually performed, which takes a …