Neural operators for accelerating scientific simulations and design

K Azizzadenesheli, N Kovachki, Z Li… - Nature Reviews …, 2024 - nature.com
Scientific discovery and engineering design are currently limited by the time and cost of
physical experiments. Numerical simulations are an alternative approach but are usually …

Fourier neural operator with learned deformations for pdes on general geometries

Z Li, DZ Huang, B Liu, A Anandkumar - Journal of Machine Learning …, 2023 - jmlr.org
Deep learning surrogate models have shown promise in solving partial differential
equations (PDEs). Among them, the Fourier neural operator (FNO) achieves good accuracy …

Fast sampling of diffusion models via operator learning

H Zheng, W Nie, A Vahdat… - International …, 2023 - proceedings.mlr.press
Diffusion models have found widespread adoption in various areas. However, their
sampling process is slow because it requires hundreds to thousands of network evaluations …

Geometry-informed neural operator for large-scale 3d pdes

Z Li, N Kovachki, C Choy, B Li… - Advances in …, 2024 - proceedings.neurips.cc
We propose the geometry-informed neural operator (GINO), a highly efficient approach to
learning the solution operator of large-scale partial differential equations with varying …

A critical review of physics-informed machine learning applications in subsurface energy systems

A Latrach, ML Malki, M Morales, M Mehana… - Geoenergy Science and …, 2024 - Elsevier
Abstract Machine learning has emerged as a powerful tool in various fields, including
computer vision, natural language processing, and speech recognition. It can unravel …

Artificial intelligence for science in quantum, atomistic, and continuum systems

X Zhang, L Wang, J Helwig, Y Luo, C Fu, Y Xie… - arXiv preprint arXiv …, 2023 - arxiv.org
Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural
sciences. Today, AI has started to advance natural sciences by improving, accelerating, and …

Clifford neural layers for pde modeling

J Brandstetter, R Berg, M Welling, JK Gupta - arXiv preprint arXiv …, 2022 - arxiv.org
Partial differential equations (PDEs) see widespread use in sciences and engineering to
describe simulation of physical processes as scalar and vector fields interacting and …

U-no: U-shaped neural operators

MA Rahman, ZE Ross, K Azizzadenesheli - arXiv preprint arXiv …, 2022 - arxiv.org
Neural operators generalize classical neural networks to maps between infinite-dimensional
spaces, eg, function spaces. Prior works on neural operators proposed a series of novel …

Geometry processing with neural fields

G Yang, S Belongie, B Hariharan… - Advances in Neural …, 2021 - proceedings.neurips.cc
Most existing geometry processing algorithms use meshes as the default shape
representation. Manipulating meshes, however, requires one to maintain high quality in the …

Towards multi-spatiotemporal-scale generalized pde modeling

JK Gupta, J Brandstetter - arXiv preprint arXiv:2209.15616, 2022 - arxiv.org
Partial differential equations (PDEs) are central to describing complex physical system
simulations. Their expensive solution techniques have led to an increased interest in deep …