Transformers in medical imaging: A survey

F Shamshad, S Khan, SW Zamir, MH Khan… - Medical Image …, 2023 - Elsevier
Following unprecedented success on the natural language tasks, Transformers have been
successfully applied to several computer vision problems, achieving state-of-the-art results …

Explainable AI for healthcare 5.0: opportunities and challenges

D Saraswat, P Bhattacharya, A Verma, VK Prasad… - IEEE …, 2022 - ieeexplore.ieee.org
In the healthcare domain, a transformative shift is envisioned towards Healthcare 5.0. It
expands the operational boundaries of Healthcare 4.0 and leverages patient-centric digital …

[HTML][HTML] Significance of machine learning in healthcare: Features, pillars and applications

M Javaid, A Haleem, RP Singh, R Suman… - International Journal of …, 2022 - Elsevier
Abstract Machine Learning (ML) applications are making a considerable impact on
healthcare. ML is a subtype of Artificial Intelligence (AI) technology that aims to improve the …

[HTML][HTML] Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities

W Saeed, C Omlin - Knowledge-Based Systems, 2023 - Elsevier
The past decade has seen significant progress in artificial intelligence (AI), which has
resulted in algorithms being adopted for resolving a variety of problems. However, this …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

Privacy and artificial intelligence: challenges for protecting health information in a new era

B Murdoch - BMC Medical Ethics, 2021 - Springer
Background Advances in healthcare artificial intelligence (AI) are occurring rapidly and there
is a growing discussion about managing its development. Many AI technologies end up …

Natural resources, green innovation, fintech, and sustainability: A fresh insight from BRICS

L Lisha, S Mousa, G Arnone, I Muda, R Huerta-Soto… - Resources Policy, 2023 - Elsevier
Since the industrial revolution, the financial sector has become a significant claimant toward
the growth of human society. However, supporting the adverse environmental projects in …

[HTML][HTML] A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations …

IU Ekanayake, DPP Meddage, U Rathnayake - Case Studies in …, 2022 - Elsevier
Abstract Machine learning (ML) techniques are often employed for the accurate prediction of
the compressive strength of concrete. Despite higher accuracy, previous ML models failed to …

[HTML][HTML] The role of explainability in creating trustworthy artificial intelligence for health care: a comprehensive survey of the terminology, design choices, and …

AF Markus, JA Kors, PR Rijnbeek - Journal of biomedical informatics, 2021 - Elsevier
Artificial intelligence (AI) has huge potential to improve the health and well-being of people,
but adoption in clinical practice is still limited. Lack of transparency is identified as one of the …

Developing future human-centered smart cities: Critical analysis of smart city security, Data management, and Ethical challenges

K Ahmad, M Maabreh, M Ghaly, K Khan, J Qadir… - Computer Science …, 2022 - Elsevier
As the globally increasing population drives rapid urbanization in various parts of the world,
there is a great need to deliberate on the future of the cities worth living. In particular, as …