Rigidity of valuative trees under henselization

E Nart - Pacific Journal of Mathematics, 2022 - msp.org
Let (K, v) be a valued field and let (K h, vh) be the henselization determined by the choice of
an extension of v to an algebraic closure of K. Consider an embedding v (K∗)↪ Λ of the …

Key polynomials for simple extensions of valued fields

FJ Govantes, W Mahboub, MA Acosta… - arXiv preprint arXiv …, 2014 - arxiv.org
Let $\iota: K\hookrightarrow L\cong K (x) $ be a simple transcendental extension of valued
fields, where $ K $ is equipped with a valuation $\nu $ of rank 1. That is, we assume given a …

Cuts and small extensions of abelian ordered groups

FV Kuhlmann, E Nart - Journal of Pure and Applied Algebra, 2022 - Elsevier
We classify cuts in (totally) ordered abelian groups Γ and compute the coinitiality and
cofinality of all cuts in case Γ is divisible, in terms of data intrinsically associated to the …

Minimal limit key polynomials

E Nart, J Novacoski - arXiv preprint arXiv:2311.13558, 2023 - arxiv.org
In this paper, we extend the theory of minimal limit key polynomials of valuations on the
polynomial ring $\kx $. We use the theory of cuts on ordered abelian groups to show that the …

Limit key polynomials as p-polynomials

M de Moraes, J Novacoski - Journal of Algebra, 2021 - Elsevier
The main goal of this paper is to characterize limit key polynomials for a valuation ν on K [x].
We consider the set Ψ α of key polynomials for ν of degree α. We set p to be the exponent …

A characterization for the defect of rank one valued field extensions

J Novacoski - Journal of the London Mathematical Society, 2024 - Wiley Online Library
In this paper, we present a characterization for the defect of a simple algebraic extension of
rank one valued fields using the key polynomials that define the valuation. As a particular …

K\" ahler differentials, pure extensions and minimal key polynomials

J Novacoski, M Spivakovsky - arXiv preprint arXiv:2311.14322, 2023 - arxiv.org
The main object of study in this paper is the module $\Omega $ of K\" ahler differentials of an
extension of valuation rings. We show that in the case of pure extensions $\Omega $ has a …

Key polynomials in terms of ultrametric balls

E Nart, J Novacoski, G Peruginelli - arXiv preprint arXiv:2404.08357, 2024 - arxiv.org
In this paper we present characterizations of the sets of key polynomials and abstract key
polynomials for a valuation $\mu $ of $ K (x) $, in terms of (ultrametric) balls in the algebraic …

MAC LANE–VAQUIÉ CHAINS AND VALUATION-TRANSCENDENTAL EXTENSIONS

S Mavi, A Bishnoi - Journal of Commutative Algebra, 2023 - projecteuclid.org
MacLane–Vaquié chains and valuation-transcendental extensions Page 1 J CA JOURNAL OF
COMMUTATIVE ALGEBRA Volume 15 (2023), No. 2, 249–259 DOI: 10.1216/jca.2023.15.249 © …

Okutsu frames of irreducible polynomials over henselian fields

M Alberich-Carramiñana, J Guàrdia, J Roé… - arXiv preprint arXiv …, 2021 - arxiv.org
For a henselian valued field $(K, v) $ we establish a complete parallelism between the
arithmetic properties of irreducible polynomials $ F\in K [x] $, encoded by their Okutsu …