Review of multifunctional separators: Stabilizing the cathode and the anode for alkali (Li, Na, and K) metal–sulfur and selenium batteries

H Hao, T Hutter, BL Boyce, J Watt, P Liu… - Chemical …, 2022 - ACS Publications
Alkali metal batteries based on lithium, sodium, and potassium anodes and sulfur-based
cathodes are regarded as key for next-generation energy storage due to their high …

Recent Progress for Concurrent Realization of Shuttle‐Inhibition and Dendrite‐Free Lithium–Sulfur Batteries

W Yao, J Xu, L Ma, X Lu, D Luo, J Qian… - Advanced …, 2023 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries have become one of the most promising new‐
generation energy storage systems owing to their ultrahigh energy density (2600 Wh kg− 1) …

P‐Doped NiTe2 with Te‐Vacancies in Lithium–Sulfur Batteries Prevents Shuttling and Promotes Polysulfide Conversion

W Yao, C Tian, C Yang, J Xu, Y Meng… - Advanced …, 2022 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries have been hindered by the shuttle effect and
sluggish polysulfide conversion kinetics. Here, a P‐doped nickel tellurium electrocatalyst …

Advances in lithium–sulfur batteries: from academic research to commercial viability

Y Chen, T Wang, H Tian, D Su, Q Zhang… - Advanced …, 2021 - Wiley Online Library
Lithium‐ion batteries, which have revolutionized portable electronics over the past three
decades, were eventually recognized with the 2019 Nobel Prize in chemistry. As the energy …

Strategies toward high-loading lithium–sulfur batteries

T Wang, J He, XB Cheng, J Zhu, B Lu, Y Wu - ACS Energy Letters, 2022 - ACS Publications
A high sulfur loading is an essential prerequisite for the practical application of lithium–sulfur
batteries. However, it will inevitably exacerbate the shuttling effect and slow down the …

ZnS-SnS@ NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium–sulfur batteries

W Yao, W Zheng, J Xu, C Tian, K Han, W Sun, S Xiao - ACS nano, 2021 - ACS Publications
Lithium–sulfur (Li–S) batteries are severely hindered by the low sulfur utilization and short
cycling life, especially at high rates. One of the effective solutions to address these problems …

Li-S batteries: challenges, achievements and opportunities

H Raza, S Bai, J Cheng, S Majumder, H Zhu… - Electrochemical Energy …, 2023 - Springer
To realize a low-carbon economy and sustainable energy supply, the development of
energy storage devices has aroused intensive attention. Lithium-sulfur (Li-S) batteries are …

Engineering cooperative catalysis in Li–S batteries

J Qin, R Wang, P Xiao, D Wang - Advanced Energy Materials, 2023 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries are regarded to be one of the most promising next‐
generation batteries owing to the merits of high theoretical capacity and low cost. However …

Utilizing the Built‐in Electric Field of p–n Junctions to Spatially Propel the Stepwise Polysulfide Conversion in Lithium–Sulfur Batteries

H Li, C Chen, Y Yan, T Yan, C Cheng, D Sun… - Advanced …, 2021 - Wiley Online Library
Integrating sulfur cathodes with effective catalysts to accelerate polysulfide conversion is a
suitable way for overcoming the serious shuttling and sluggish conversion of polysulfides in …

Highly active and stable oxygen vacancies via sulfur modification for efficient catalysis in lithium–sulfur batteries

C Zhao, B Jiang, Y Huang, X Sun, M Wang… - Energy & …, 2023 - pubs.rsc.org
The introduction of oxygen vacancies (Vo) in lithium–sulfur battery (LSB) catalysts is
regarded as an effective approach to improving catalyst performance. However, the high …