Probing non-orthogonality of eigenvectors in non-Hermitian matrix models: diagrammatic approach

MA Nowak, W Tarnowski - Journal of High Energy Physics, 2018 - Springer
A bstract Using large N arguments, we propose a scheme for calculating the two-point
eigenvector correlation function for non-normal random matrices in the large N limit. The …

On fluctuations of global and mesoscopic linear statistics of generalized Wigner matrices

Y Li, Y Xu - 2021 - projecteuclid.org
We consider an N by N real or complex generalized Wigner matrix HN, whose entries are
independent centered random variables with uniformly bounded moments. We assume that …

Fluctuations for matrix-valued Gaussian processes

M Diaz, A Jaramillo, JC Pardo - … de l'Institut Henri Poincare (B) …, 2022 - projecteuclid.org
We consider a symmetric matrix-valued Gaussian process Y (n)=(Y (n)(t); t≥ 0) and its
empirical spectral measure process μ (n)=(μ t (n); t≥ 0). Under some mild conditions on the …

Some estimates for generalized Wigner matrix linear spectral statistics

B Landon - arXiv preprint arXiv:2412.14070, 2024 - arxiv.org
We consider the characteristic function of linear spectral statistics of generalized Wigner
matrices. We provide an expansion of the characteristic function with error $\mathcal {O}(N …

On the analytic structure of second-order non-commutative probability spaces and functions of bounded Fréchet variation

M Diaz, JA Mingo - Random Matrices: Theory and Applications, 2023 - World Scientific
In this paper, we propose a new approach to the central limit theorem (CLT) based on
functions of bounded Fréchet variation for the continuously differentiable linear statistics of …

Directional phantom distribution functions for stationary random fields

A Jakubowski, I Rodionov, N Soja-Kukieła - 2021 - projecteuclid.org
We give necessary and sufficient conditions for the existence of a phantom distribution
function for a stationary random field on a regular lattice. We also introduce a less …

On fluctuations of global and mesoscopic linear eigenvalue statistics of generalized Wigner matrices

Y Li, Y Xu - arXiv preprint arXiv:2001.08725, 2020 - arxiv.org
We consider an $ N $ by $ N $ real or complex generalized Wigner matrix $ H_N $, whose
entries are independent centered random variables with uniformly bounded moments. We …

Fluctuations for matrix-valued Gaussian processes

M Diaz, A Jaramillo, JC Pardo - arXiv preprint arXiv:2001.03718, 2020 - arxiv.org
We consider a symmetric matrix-valued Gaussian process $ Y^{(n)}=(Y^{(n)}(t); t\ge0) $ and
its empirical spectral measure process $\mu^{(n)}=(\mu_ {t}^{(n)}; t\ge0) $. Under some mild …

Fluctuations for matrix-valued Gaussian processes

A Jaramillo Gil, JC Pardo Millan, MA Diaz Torres - 2020 - orbilu.uni.lu
We consider a symmetric matrix-valued Gaussian process $ Y^{(n)}=(Y^{(n)}(t); t\ge0) $ and
its empirical spectral measure process $\mu^{(n)}=(\mu_ {t}^{(n)}; t\ge0) $. Under some mild …