Adversarial machine learning in wireless communications using RF data: A review

D Adesina, CC Hsieh, YE Sagduyu… - … Surveys & Tutorials, 2022 - ieeexplore.ieee.org
Machine learning (ML) provides effective means to learn from spectrum data and solve
complex tasks involved in wireless communications. Supported by recent advances in …

Threat of adversarial attacks on DL-based IoT device identification

Z Bao, Y Lin, S Zhang, Z Li… - IEEE Internet of Things …, 2021 - ieeexplore.ieee.org
With the rapid development of the information technology, the number of devices in the
Internet of Things (IoT) is increasing explosively, which makes device identification a great …

Channel-aware adversarial attacks against deep learning-based wireless signal classifiers

B Kim, YE Sagduyu, K Davaslioglu… - IEEE Transactions …, 2021 - ieeexplore.ieee.org
This paper presents channel-aware adversarial attacks against deep learning-based
wireless signal classifiers. There is a transmitter that transmits signals with different …

Security for Machine Learning-based Software Systems: A Survey of Threats, Practices, and Challenges

H Chen, MA Babar - ACM Computing Surveys, 2024 - dl.acm.org
The rapid development of Machine Learning (ML) has demonstrated superior performance
in many areas, such as computer vision and video and speech recognition. It has now been …

Federated learning for big data: A survey on opportunities, applications, and future directions

TR Gadekallu, QV Pham, T Huynh-The… - arXiv preprint arXiv …, 2021 - arxiv.org
Big data has remarkably evolved over the last few years to realize an enormous volume of
data generated from newly emerging services and applications and a massive number of …

Adversarial machine learning for 5G communications security

YE Sagduyu, T Erpek, Y Shi - Game Theory and Machine …, 2021 - Wiley Online Library
Machine learning provides automated means to capture complex dynamics of wireless
spectrum and support better understanding of spectrum resources and their efficient …

Adversarial machine learning for flooding attacks on 5G radio access network slicing

Y Shi, YE Sagduyu - 2021 IEEE International Conference on …, 2021 - ieeexplore.ieee.org
Network slicing manages network resources as virtual resource blocks (RBs) for the 5G
Radio Access Network (RAN). Each communication request comes with quality of …

When attackers meet AI: Learning-empowered attacks in cooperative spectrum sensing

Z Luo, S Zhao, Z Lu, J Xu… - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
Defense strategies have been well studied to combat Byzantine attacks that aim to disrupt
cooperative spectrum sensing by sending falsified versions of spectrum sensing data to a …

Membership inference attack and defense for wireless signal classifiers with deep learning

Y Shi, YE Sagduyu - IEEE Transactions on Mobile Computing, 2022 - ieeexplore.ieee.org
An over-the-air membership inference attack (MIA) is presented to leak private information
from a wireless signal classifier. Machine learning (ML) provides powerful means to classify …

Adversarial attacks against deep learning based power control in wireless communications

B Kim, Y Shi, YE Sagduyu, T Erpek… - 2021 IEEE Globecom …, 2021 - ieeexplore.ieee.org
We consider adversarial machine learning based attacks on power allocation where the
base station (BS) allocates its transmit power to multiple orthogonal subcarriers by using a …