Y Boubendir, X Antoine, C Geuzaine - Journal of Computational Physics, 2012 - Elsevier
This paper presents a new non-overlapping domain decomposition method for the Helmholtz equation, whose effective convergence is quasi-optimal. These improved …
Recent advances in graphics processing units (GPUs) technology open a new era in high performance computing. Applications of GPUs to scientific computations are attracting a lot …
A Vion, C Geuzaine - Journal of Computational Physics, 2014 - Elsevier
This paper presents a preconditioner for non-overlapping Schwarz methods applied to the Helmholtz problem. Starting from a simple analytic example, we show how such a …
We propose an original method based on generalized plane waves and approximated coefficients for the numerical approximation of the Helmholtz equation with a smooth …
Q Hu, L Yuan - Advances in Computational Mathematics, 2018 - Springer
In this paper we are concerned with plane wave discretizations of nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations. To this end, we design a plane …
D Wang, R Tezaur, J Toivanen… - International Journal for …, 2012 - Wiley Online Library
The efficient finite element discretization of the Helmholtz equation becomes challenging in the medium frequency regime because of numerical dispersion, or what is often referred to …
A new hybridizable discontinuous Galerkin method, named the CHDG method, is proposed for solving time-harmonic scalar wave propagation problems. This method relies on a …
R Ohayon, C Soize - Applied Sciences, 2017 - mdpi.com
Within the framework of the state-of-the-art, this paper presents a summary of some common research works carried out by the authors concerning computational methods for the …
S Magura, S Petropavlovsky, S Tsynkov… - Applied Numerical …, 2017 - Elsevier
Standard numerical methods often fail to solve the Helmholtz equation accurately near reentrant corners, since the solution may become singular. The singularity has an …