A review of safe reinforcement learning: Methods, theory and applications

S Gu, L Yang, Y Du, G Chen, F Walter, J Wang… - arXiv preprint arXiv …, 2022 - arxiv.org
Reinforcement Learning (RL) has achieved tremendous success in many complex decision-
making tasks. However, safety concerns are raised during deploying RL in real-world …

A survey of collaborative machine learning using 5G vehicular communications

SV Balkus, H Wang, BD Cornet… - … Surveys & Tutorials, 2022 - ieeexplore.ieee.org
By enabling autonomous vehicles (AVs) to share data while driving, 5G vehicular
communications allow AVs to collaborate on solving common autonomous driving tasks …

End-to-end autonomous driving: Challenges and frontiers

L Chen, P Wu, K Chitta, B Jaeger… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
The autonomous driving community has witnessed a rapid growth in approaches that
embrace an end-to-end algorithm framework, utilizing raw sensor input to generate vehicle …

Dense reinforcement learning for safety validation of autonomous vehicles

S Feng, H Sun, X Yan, H Zhu, Z Zou, S Shen, HX Liu - Nature, 2023 - nature.com
One critical bottleneck that impedes the development and deployment of autonomous
vehicles is the prohibitively high economic and time costs required to validate their safety in …

A digital twin smart city for citizen feedback

G White, A Zink, L Codecá, S Clarke - Cities, 2021 - Elsevier
A digital twin is a digital representation of a physical process, person, place, system or
device. Digital twins were originally designed to improve manufacturing processes using …

Learning from all vehicles

D Chen, P Krähenbühl - … of the IEEE/CVF Conference on …, 2022 - openaccess.thecvf.com
In this paper, we present a system to train driving policies from experiences collected not just
from the ego-vehicle, but all vehicles that it observes. This system uses the behaviors of …

Trace and pace: Controllable pedestrian animation via guided trajectory diffusion

D Rempe, Z Luo, X Bin Peng, Y Yuan… - Proceedings of the …, 2023 - openaccess.thecvf.com
We introduce a method for generating realistic pedestrian trajectories and full-body
animations that can be controlled to meet user-defined goals. We draw on recent advances …

Deep reinforcement learning for autonomous driving: A survey

BR Kiran, I Sobh, V Talpaert, P Mannion… - IEEE Transactions …, 2021 - ieeexplore.ieee.org
With the development of deep representation learning, the domain of reinforcement learning
(RL) has become a powerful learning framework now capable of learning complex policies …

Transportation 5.0: The DAO to safe, secure, and sustainable intelligent transportation systems

FY Wang, Y Lin, PA Ioannou, L Vlacic… - IEEE Transactions …, 2023 - ieeexplore.ieee.org
In 2014, IEEE Intelligent Transportation Systems Society established a Technical Committee
on Transportation 5.0 with the mission of promoting and transforming the deployment of …

Metadrive: Composing diverse driving scenarios for generalizable reinforcement learning

Q Li, Z Peng, L Feng, Q Zhang, Z Xue… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Driving safely requires multiple capabilities from human and intelligent agents, such as the
generalizability to unseen environments, the safety awareness of the surrounding traffic, and …