Semantic Prototypes: Enhancing Transparency Without Black Boxes

O Menis Mastromichalakis, G Filandrianos… - Proceedings of the 33rd …, 2024 - dl.acm.org
As machine learning (ML) models and datasets increase in complexity, the demand for
methods that enhance explainability and interpretability becomes paramount. Prototypes, by …

Semantic prioritization in visual counterfactual explanations with weighted segmentation and auto-adaptive region selection

L Zhang, K Yin, SW Lee - Neural Networks, 2024 - Elsevier
In the domain of non-generative visual counterfactual explanations (CE), traditional
techniques frequently involve the substitution of sections within a query image with …

Machine Learning and Knowledge Graphs: Existing Gaps and Future Research Challenges

C d'Amato, L Mahon, P Monnin… - Transactions on Graph …, 2023 - inria.hal.science
The graph model is nowadays largely adopted to model a wide range of knowledge and
data, spanning from social networks to knowledge graphs (KGs), representing a successful …

Structure Your Data: Towards Semantic Graph Counterfactuals

A Dimitriou, M Lymperaiou, G Filandrianos… - arXiv preprint arXiv …, 2024 - arxiv.org
Counterfactual explanations (CEs) based on concepts are explanations that consider
alternative scenarios to understand which high-level semantic features contributed to …

GOSt-MT: A Knowledge Graph for Occupation-related Gender Biases in Machine Translation

OM Mastromichalakis, G Filandrianos… - arXiv preprint arXiv …, 2024 - arxiv.org
Gender bias in machine translation (MT) systems poses significant challenges that often
result in the reinforcement of harmful stereotypes. Especially in the labour domain where …

Graph Edits for Counterfactual Explanations: A Unified GNN Approach

N Chaidos, A Dimitriou, M Lymperaiou… - arXiv preprint arXiv …, 2024 - arxiv.org
Counterfactuals have been established as a popular explainability technique which
leverages a set of minimal edits to alter the prediction of a classifier. When considering …

Even-if Explanations: Formal Foundations, Priorities and Complexity

G Alfano, S Greco, D Mandaglio, F Parisi… - arXiv preprint arXiv …, 2024 - arxiv.org
EXplainable AI has received significant attention in recent years. Machine learning models
often operate as black boxes, lacking explainability and transparency while supporting …

[PDF][PDF] How to go viral: leveraging graph and semantic counterfactual algorithms

I Kioura - 2025 - dspace.lib.ntua.gr
Περίληψη Η παρούσα διατριβή εμβαθύνει στον πολύπλοκο τομέα του virality και
παραγόντων που το καθορίζουν, εστιάζοντας στα βίντεο του YouTube. Τα εισαγωγικά …

[PDF][PDF] Unsupervised scene graph retrieval using graph autoencoders

N Chaidos - 2024 - dspace.lib.ntua.gr
Περίληψη Τα Νευρωνικά Δίκτυα Γράφων (ΝΔΓ) έχουν αναδειχθεί ως ένα βασικό μοντέλο στον
τομέα της μηχανικής μάθησης, λόγω της μοναδικής τους ικανότητας να χειρίζονται δεδομένα …

[PDF][PDF] Knowledge Graph Based Explanation and Evaluation of Machine Learning Systems

EG Dervakos - 2024 - dspace.lib.ntua.gr
Περίληψη Η τεχνητή νοημοσύνη υπέστη εκρηκτική εξέλιξη τα τελευταία χρόνια. Με κινητήριο
δύναμη την τεχνολογία της βαθιάς μάθησης, η τεχνητή νοημοσύνη βρίσκει εφαρμογή σε …