S Kiss - Ann. Univ. Sci. Budapest. Eötvös Sect. Math.,, 2005 - annales-math.elte.hu
Let k> 2 be a fixed integer and let A={a1 a2:::}(a1< a2<:::) be an infinite sequence of positive integers. For n= 0 1 2::: let Rk (n) denote the number of solutions of ai1+ ai2+:::+ aik= n, ai1 …
SZ Kiss, C Sándor - Acta Mathematica Hungarica, 2019 - Springer
Abstract Let A={a_ 1, a_ 2,\} A= a 1, a 2,⋯(a_ 1< a_ 2< ⋯)(a 1< a 2<⋯) be an infinite sequence of nonnegative integers, and let R_ A, 2 (n) RA, 2 (n) denote the number of …