Continual learning for robotics: Definition, framework, learning strategies, opportunities and challenges

T Lesort, V Lomonaco, A Stoian, D Maltoni, D Filliat… - Information fusion, 2020 - Elsevier
Continual learning (CL) is a particular machine learning paradigm where the data
distribution and learning objective change through time, or where all the training data and …

Continual lifelong learning in natural language processing: A survey

M Biesialska, K Biesialska, MR Costa-Jussa - arXiv preprint arXiv …, 2020 - arxiv.org
Continual learning (CL) aims to enable information systems to learn from a continuous data
stream across time. However, it is difficult for existing deep learning architectures to learn a …

Class-incremental learning by knowledge distillation with adaptive feature consolidation

M Kang, J Park, B Han - … of the IEEE/CVF conference on …, 2022 - openaccess.thecvf.com
We present a novel class incremental learning approach based on deep neural networks,
which continually learns new tasks with limited memory for storing examples in the previous …

Class-incremental learning: survey and performance evaluation on image classification

M Masana, X Liu, B Twardowski… - … on Pattern Analysis …, 2022 - ieeexplore.ieee.org
For future learning systems, incremental learning is desirable because it allows for: efficient
resource usage by eliminating the need to retrain from scratch at the arrival of new data; …

A continual learning survey: Defying forgetting in classification tasks

M De Lange, R Aljundi, M Masana… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Artificial neural networks thrive in solving the classification problem for a particular rigid task,
acquiring knowledge through generalized learning behaviour from a distinct training phase …

Large scale incremental learning

Y Wu, Y Chen, L Wang, Y Ye, Z Liu… - Proceedings of the …, 2019 - openaccess.thecvf.com
Modern machine learning suffers from catastrophic forgetting when learning new classes
incrementally. The performance dramatically degrades due to the missing data of old …

End-to-end incremental learning

FM Castro, MJ Marín-Jiménez, N Guil… - Proceedings of the …, 2018 - openaccess.thecvf.com
Although deep learning approaches have stood out in recent years due to their state-of-the-
art results, they continue to suffer from catastrophic forgetting, a dramatic decrease in overall …

A theoretical study on solving continual learning

G Kim, C Xiao, T Konishi, Z Ke… - Advances in neural …, 2022 - proceedings.neurips.cc
Continual learning (CL) learns a sequence of tasks incrementally. There are two popular CL
settings, class incremental learning (CIL) and task incremental learning (TIL). A major …

Overcoming catastrophic forgetting with hard attention to the task

J Serra, D Suris, M Miron… - … conference on machine …, 2018 - proceedings.mlr.press
Catastrophic forgetting occurs when a neural network loses the information learned in a
previous task after training on subsequent tasks. This problem remains a hurdle for artificial …

Continual learning through synaptic intelligence

F Zenke, B Poole, S Ganguli - International conference on …, 2017 - proceedings.mlr.press
While deep learning has led to remarkable advances across diverse applications, it
struggles in domains where the data distribution changes over the course of learning. In …