Particle swarm optimization: An overview

R Poli, J Kennedy, T Blackwell - Swarm intelligence, 2007 - Springer
Particle swarm optimization (PSO) has undergone many changes since its introduction in
1995. As researchers have learned about the technique, they have derived new versions …

Composite particle swarm optimizer with historical memory for function optimization

J Li, JQ Zhang, CJ Jiang… - IEEE transactions on …, 2015 - ieeexplore.ieee.org
Particle swarm optimization (PSO) algorithm is a population-based stochastic optimization
technique. It is characterized by the collaborative search in which each particle is attracted …

A hybrid particle swarm optimization with estimation of distribution algorithm for solving permutation flowshop scheduling problem

H Liu, L Gao, Q Pan - Expert Systems with Applications, 2011 - Elsevier
In this paper we propose PSO–EDA, a hybrid particle swarm optimization (PSO) with
estimation of distribution algorithm (EDA) to solve permutation flowshop scheduling problem …

[HTML][HTML] Directed particle swarm optimization with Gaussian-process-based function forecasting

J Jakubik, A Binding, S Feuerriegel - European Journal of Operational …, 2021 - Elsevier
Particle swarm optimization (PSO) is an iterative search method that moves a set of
candidate solution around a search-space towards the best known global and local …

Feature selection using enhanced particle swarm optimisation for classification models

H Xie, L Zhang, CP Lim, Y Yu, H Liu - Sensors, 2021 - mdpi.com
In this research, we propose two Particle Swarm Optimisation (PSO) variants to undertake
feature selection tasks. The aim is to overcome two major shortcomings of the original PSO …

Perfectionnement des algorithmes d'optimisation par essaim particulaire: applications en segmentation d'images et en électronique

A El Dor - 2012 - theses.hal.science
La résolution satisfaisante d'un problème d'optimisation difficile, qui comporte un grand
nombre de solutions sous-optimales, justifie souvent le recours à une métaheuristique …

Two new meta-heuristics for a bi-objective supply chain scheduling problem in flow-shop environment

A Hassanzadeh, M Rasti-Barzoki, H Khosroshahi - Applied soft computing, 2016 - Elsevier
In this study, an integrated multi-objective production-distribution flow-shop scheduling
problem will be taken into consideration with respect to two objective functions. The first …

Perfectionnement d'un algorithme adaptatif d'Optimisation par Essaim Particulaire: application en génie médical et en électronique

Y Cooren - 2008 - theses.hal.science
Les métaheuristiques sont une famille d'algorithmes stochastiques destinés à résoudre des
problèmes d'optimisation difficile. Utilisées dans de nombreux domaines, ces méthodes …

Estimation of particle swarm distribution algorithms: Combining the benefits of PSO and EDAs

CW Ahn, J An, JC Yoo - Information Sciences, 2012 - Elsevier
This paper presents a novel framework of the estimation of particle swarm distribution
algorithms (EPSDAs). The aim is to effectively combine particle swarm optimization (PSO) …

Applicability of surrogates to improve efficiency of particle swarm optimization for simulation-based problems

MD Parno, T Hemker, KR Fowler - Engineering optimization, 2012 - Taylor & Francis
Particle swarm optimization (PSO) is a population-based, heuristic technique based on
social behaviour that performs well on a variety of problems including those with non …