V Piccirillo - Chaos, Solitons & Fractals, 2021 - Elsevier
In this study, a mathematical model (SEIR model) with a restriction parameter is used to explore the dynamic of the COVID-19 pandemic. This work presents a nonlinear and robust …
T Zhang, Y Li - Applied Mathematics Letters, 2022 - Elsevier
This paper establishes the basic structure of the exponential Euler difference form for Caputo–Fabrizio fractional-order differential equations (CF-FODEs) with multiple lags. The …
IA Baba, FA Rihan - Physica A: Statistical Mechanics and its Applications, 2022 - Elsevier
This study examines the dynamics of COVID-19 variants using a Caputo–Fabrizio fractional order model. The reproduction ratio R 0 and equilibrium solutions are determined. The …
Solution of a fractional logistic ordinary differential equation - ScienceDirect Skip to main contentSkip to article Elsevier logo Journals & Books Search RegisterSign in View PDF …
P Kumar, VS Erturk, M Murillo-Arcila - Results in Physics, 2021 - Elsevier
The most dangerous disease of this decade novel coronavirus or COVID-19 is yet not over. The whole world is facing this threat and trying to stand together to defeat this pandemic …
We investigate, through a fractional mathematical model, the effects of physical distance on the SARS-CoV-2 virus transmission. Two controls are considered in our model for …
In this research paper, a novel approach in dengue modeling with the asymptomatic carrier and reinfection via the fractional derivative is suggested to deeply interrogate the …
In this paper, a nonlinear fractional order model of COVID-19 is approximated. For this aim, at first we apply the Caputo–Fabrizio fractional derivative to model the usual form of the …
In this work, we develop a sophisticated mathematical model for dengue transmission dynamics based on vaccination, reinfection and carrier class assumptions. We utilize …