Fast and robust Bayesian inference using Gaussian processes with GPry

J El Gammal, N Schöneberg, J Torrado… - Journal of Cosmology …, 2023 - iopscience.iop.org
We present the GPry algorithm for fast Bayesian inference of general (non-Gaussian)
posteriors with a moderate number of parameters. GPry does not need any pre-training …

PyBADS: Fast and robust black-box optimization in Python

GS Singh, L Acerbi - arXiv preprint arXiv:2306.15576, 2023 - arxiv.org
PyBADS is a Python implementation of the Bayesian Adaptive Direct Search (BADS)
algorithm for fast and robust black-box optimization (Acerbi and Ma 2017). BADS is an …

BlackBIRDS: Black-Box Inference foR Differentiable Simulators

A Quera-Bofarull, J Dyer, A Calinescu… - Journal of Open …, 2023 - ora.ox.ac.uk
BlackBIRDS is a Python package consisting of generically applicable, black-box inference
methods for differentiable simulation models. It facilitates both (a) the differentiable …

BCI Toolbox: An open-source python package for the Bayesian causal inference model

H Zhu, U Beierholm, L Shams - PLoS Computational Biology, 2024 - journals.plos.org
Psychological and neuroscientific research over the past two decades has shown that the
Bayesian causal inference (BCI) is a potential unifying theory that can account for a wide …

[PDF][PDF] CalibrateEmulateSample. jl: Accelerated Parametric Uncertainty Quantification

R Oliver, M Bieli, A Garbuno-Iñigo… - Journal of Open …, 2024 - joss.theoj.org
A Julia language (Bezanson et al., 2017) package providing practical and modular
implementation of “Calibrate, Emulate, Sample”(Cleary et al., 2021), hereafter CES, an …

LINFA: a Python library for variational inference with normalizing flow and annealing

Y Wang, ER Cobian, J Lee, F Liu… - arXiv preprint arXiv …, 2023 - arxiv.org
Variational inference is an increasingly popular method in statistics and machine learning
for approximating probability distributions. We developed LINFA (Library for Inference with …