Fairness in recommender systems: research landscape and future directions

Y Deldjoo, D Jannach, A Bellogin, A Difonzo… - User Modeling and User …, 2024 - Springer
Recommender systems can strongly influence which information we see online, eg, on
social media, and thus impact our beliefs, decisions, and actions. At the same time, these …

Fairness in deep learning: A survey on vision and language research

O Parraga, MD More, CM Oliveira, NS Gavenski… - ACM Computing …, 2023 - dl.acm.org
Despite being responsible for state-of-the-art results in several computer vision and natural
language processing tasks, neural networks have faced harsh criticism due to some of their …

A survey on the fairness of recommender systems

Y Wang, W Ma, M Zhang, Y Liu, S Ma - ACM Transactions on …, 2023 - dl.acm.org
Recommender systems are an essential tool to relieve the information overload challenge
and play an important role in people's daily lives. Since recommendations involve …

Fairness in graph mining: A survey

Y Dong, J Ma, S Wang, C Chen… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Graph mining algorithms have been playing a significant role in myriad fields over the years.
However, despite their promising performance on various graph analytical tasks, most of …

Empowering news recommendation with pre-trained language models

C Wu, F Wu, T Qi, Y Huang - Proceedings of the 44th international ACM …, 2021 - dl.acm.org
Personalized news recommendation is an essential technique for online news services.
News articles usually contain rich textual content, and accurate news modeling is important …

Fairness in recommendation: A survey

Y Li, H Chen, S Xu, Y Ge, J Tan, S Liu… - arXiv preprint arXiv …, 2022 - arxiv.org
As one of the most pervasive applications of machine learning, recommender systems are
playing an important role on assisting human decision making. The satisfaction of users and …

[HTML][HTML] A survey on fairness-aware recommender systems

D Jin, L Wang, H Zhang, Y Zheng, W Ding, F Xia… - Information …, 2023 - Elsevier
As information filtering services, recommender systems have extremely enriched our daily
life by providing personalized suggestions and facilitating people in decision-making, which …

Personalized news recommendation: Methods and challenges

C Wu, F Wu, Y Huang, X Xie - ACM Transactions on Information Systems, 2023 - dl.acm.org
Personalized news recommendation is important for users to find interesting news
information and alleviate information overload. Although it has been extensively studied …

Joint multisided exposure fairness for recommendation

H Wu, B Mitra, C Ma, F Diaz, X Liu - … of the 45th International ACM SIGIR …, 2022 - dl.acm.org
Prior research on exposure fairness in the context of recommender systems has focused
mostly on disparities in the exposure of individual or groups of items to individual users of …

Understanding biases in chatgpt-based recommender systems: Provider fairness, temporal stability, and recency

Y Deldjoo - ACM Transactions on Recommender Systems, 2024 - dl.acm.org
This paper explores the biases inherent in ChatGPT-based recommender systems, focusing
on provider fairness (item-side fairness). Through extensive experiments and over a …