When large language models meet personalization: Perspectives of challenges and opportunities

J Chen, Z Liu, X Huang, C Wu, Q Liu, G Jiang, Y Pu… - World Wide Web, 2024 - Springer
The advent of large language models marks a revolutionary breakthrough in artificial
intelligence. With the unprecedented scale of training and model parameters, the capability …

From anecdotal evidence to quantitative evaluation methods: A systematic review on evaluating explainable ai

M Nauta, J Trienes, S Pathak, E Nguyen… - ACM Computing …, 2023 - dl.acm.org
The rising popularity of explainable artificial intelligence (XAI) to understand high-performing
black boxes raised the question of how to evaluate explanations of machine learning (ML) …

Bias and debias in recommender system: A survey and future directions

J Chen, H Dong, X Wang, F Feng, M Wang… - ACM Transactions on …, 2023 - dl.acm.org
While recent years have witnessed a rapid growth of research papers on recommender
system (RS), most of the papers focus on inventing machine learning models to better fit …

Reinforcement learning based recommender systems: A survey

MM Afsar, T Crump, B Far - ACM Computing Surveys, 2022 - dl.acm.org
Recommender systems (RSs) have become an inseparable part of our everyday lives. They
help us find our favorite items to purchase, our friends on social networks, and our favorite …

A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation

L Wu, X He, X Wang, K Zhang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Influenced by the great success of deep learning in computer vision and language
understanding, research in recommendation has shifted to inventing new recommender …

[HTML][HTML] Deep reinforcement learning in recommender systems: A survey and new perspectives

X Chen, L Yao, J McAuley, G Zhou, X Wang - Knowledge-Based Systems, 2023 - Elsevier
In light of the emergence of deep reinforcement learning (DRL) in recommender systems
research and several fruitful results in recent years, this survey aims to provide a timely and …

Reinforcement knowledge graph reasoning for explainable recommendation

Y Xian, Z Fu, S Muthukrishnan, G De Melo… - Proceedings of the 42nd …, 2019 - dl.acm.org
Recent advances in personalized recommendation have sparked great interest in the
exploitation of rich structured information provided by knowledge graphs. Unlike most …

Explainable recommendation: A survey and new perspectives

Y Zhang, X Chen - Foundations and Trends® in Information …, 2020 - nowpublishers.com
Explainable recommendation attempts to develop models that generate not only high-quality
recommendations but also intuitive explanations. The explanations may either be post-hoc …

Leveraging large language models in conversational recommender systems

L Friedman, S Ahuja, D Allen, Z Tan… - arXiv preprint arXiv …, 2023 - arxiv.org
A Conversational Recommender System (CRS) offers increased transparency and control to
users by enabling them to engage with the system through a real-time multi-turn dialogue …

Counterfactual explainable recommendation

J Tan, S Xu, Y Ge, Y Li, X Chen, Y Zhang - Proceedings of the 30th ACM …, 2021 - dl.acm.org
By providing explanations for users and system designers to facilitate better understanding
and decision making, explainable recommendation has been an important research …