Transformers in time-series analysis: A tutorial

S Ahmed, IE Nielsen, A Tripathi, S Siddiqui… - Circuits, Systems, and …, 2023 - Springer
Transformer architectures have widespread applications, particularly in Natural Language
Processing and Computer Vision. Recently, Transformers have been employed in various …

A survey on time-series pre-trained models

Q Ma, Z Liu, Z Zheng, Z Huang, S Zhu… - … on Knowledge and …, 2024 - ieeexplore.ieee.org
Time-Series Mining (TSM) is an important research area since it shows great potential in
practical applications. Deep learning models that rely on massive labeled data have been …

DA-Net: Dual-attention network for multivariate time series classification

R Chen, X Yan, S Wang, G Xiao - Information Sciences, 2022 - Elsevier
Multivariate time series classification is one of the increasingly important issues in machine
learning. Existing methods focus on establishing the global long-range dependencies or …

One transformer for all time series: Representing and training with time-dependent heterogeneous tabular data

S Luetto, F Garuti, E Sangineto, L Forni… - arXiv preprint arXiv …, 2023 - arxiv.org
There is a recent growing interest in applying Deep Learning techniques to tabular data, in
order to replicate the success of other Artificial Intelligence areas in this structured domain …

Towards Urban General Intelligence: A Review and Outlook of Urban Foundation Models

W Zhang, J Han, Z Xu, H Ni, H Liu, H Xiong - arXiv preprint arXiv …, 2024 - arxiv.org
Machine learning techniques are now integral to the advancement of intelligent urban
services, playing a crucial role in elevating the efficiency, sustainability, and livability of …

DarkMor: A framework for darknet traffic detection that integrates local and spatial features

J Yang, W Liang, X Wang, S Li, X Jiang, Y Mu, S Zeng - Neurocomputing, 2024 - Elsevier
The dark web, as an integral part of the multi-layered structure of the internet, provides
anonymity and high levels of concealment absent on the surface web. Users can engage in …

A Transformer based approach to electricity load forecasting

JW Chan, CK Yeo - The Electricity Journal, 2024 - Elsevier
In natural language processing (NLP), transformer based models have surpassed recurrent
neural networks (RNN) as state of the art, being introduced specifically to address the …

VEMUT-Sub-Sampling: A Novel Method for Sparse Multivariate Time-Series Vehicle Data

NK Apel, C Antoniou - 2023 IEEE International Conference on …, 2023 - ieeexplore.ieee.org
In today's automotive industry, modern vehicles are equipped with numerous sensors to
monitor the vehicle's state. Accurate prediction of component wear-and-tear requires the …

[PDF][PDF] Improving Predictive Process Analytics with Deep Learning and XAI

P Obuzor - 2023 - salford-repository.worktribe.com
Process mining has emerged as a ground-breaking interdisciplinary realm that bridges data
science with traditional process modelling. This innovative approach fosters a unique way of …

[PDF][PDF] Transzformer modellek jelentősége az idősorok előrejelzésénél és osztályozásánál

GD Boros - Mesterséges intelligencia, 2024 - ojs.kpluszf.com
A transzformátor modellek jelentős előrelépéseket hoztak az idősor-elemzésben, mivel
képesek hosszú távú függőségeket megragadni. A tanulmány a transzformátor modellek …