Recent advances and applications of deep learning methods in materials science

K Choudhary, B DeCost, C Chen, A Jain… - npj Computational …, 2022 - nature.com
Deep learning (DL) is one of the fastest-growing topics in materials data science, with
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …

Data‐Driven Materials Innovation and Applications

Z Wang, Z Sun, H Yin, X Liu, J Wang, H Zhao… - Advanced …, 2022 - Wiley Online Library
Owing to the rapid developments to improve the accuracy and efficiency of both
experimental and computational investigative methodologies, the massive amounts of data …

Machine learning for catalysis informatics: recent applications and prospects

T Toyao, Z Maeno, S Takakusagi, T Kamachi… - Acs …, 2019 - ACS Publications
The discovery and development of catalysts and catalytic processes are essential
components to maintaining an ecological balance in the future. Recent revolutions made in …

Electron microscopy studies of soft nanomaterials

Z Lyu, L Yao, W Chen, FC Kalutantirige… - Chemical …, 2023 - ACS Publications
This review highlights recent efforts on applying electron microscopy (EM) to soft (including
biological) nanomaterials. We will show how developments of both the hardware and …

Statistical characterization of the morphologies of nanoparticles through machine learning based electron microscopy image analysis

B Lee, S Yoon, JW Lee, Y Kim, J Chang, J Yun, JC Ro… - ACS …, 2020 - ACS Publications
Although transmission electron microscopy (TEM) may be one of the most efficient
techniques available for studying the morphological characteristics of nanoparticles …

Understanding important features of deep learning models for segmentation of high-resolution transmission electron microscopy images

JP Horwath, DN Zakharov, R Mégret… - npj Computational …, 2020 - nature.com
Cutting edge deep learning techniques allow for image segmentation with great speed and
accuracy. However, application to problems in materials science is often difficult since these …

Overview: Computer vision and machine learning for microstructural characterization and analysis

EA Holm, R Cohn, N Gao, AR Kitahara… - … Materials Transactions A, 2020 - Springer
Microstructural characterization and analysis is the foundation of microstructural science,
connecting materials structure to composition, process history, and properties …

Toward excellence of electrocatalyst design by emerging descriptor‐oriented machine learning

J Liu, W Luo, L Wang, J Zhang, XZ Fu… - Advanced Functional …, 2022 - Wiley Online Library
Abstract Machine learning (ML) is emerging as a powerful tool for identifying quantitative
structure–activity relationships to accelerate electrocatalyst design by learning from historic …

Deep learning analysis on microscopic imaging in materials science

M Ge, F Su, Z Zhao, D Su - Materials Today Nano, 2020 - Elsevier
Microscopic imaging providing the real-space information of matter, plays an important role
for understanding the correlations between structure and properties in the field of materials …

Machine learning in electron microscopy for advanced nanocharacterization: current developments, available tools and future outlook

M Botifoll, I Pinto-Huguet, J Arbiol - Nanoscale Horizons, 2022 - pubs.rsc.org
In the last few years, electron microscopy has experienced a new methodological paradigm
aimed to fix the bottlenecks and overcome the challenges of its analytical workflow. Machine …