Artificial neural networks based optimization techniques: A review

MGM Abdolrasol, SMS Hussain, TS Ustun, MR Sarker… - Electronics, 2021 - mdpi.com
In the last few years, intensive research has been done to enhance artificial intelligence (AI)
using optimization techniques. In this paper, we present an extensive review of artificial …

Recent trends on hybrid modeling for Industry 4.0

J Sansana, MN Joswiak, I Castillo, Z Wang… - Computers & Chemical …, 2021 - Elsevier
The chemical processing industry has relied on modeling techniques for process monitoring,
control, diagnosis, optimization, and design, especially since the third industrial revolution …

[HTML][HTML] Machine learning in chemical engineering: strengths, weaknesses, opportunities, and threats

MR Dobbelaere, PP Plehiers, R Van de Vijver… - Engineering, 2021 - Elsevier
Chemical engineers rely on models for design, research, and daily decision-making, often
with potentially large financial and safety implications. Previous efforts a few decades ago to …

Process systems engineering–the generation next?

EN Pistikopoulos, A Barbosa-Povoa, JH Lee… - Computers & Chemical …, 2021 - Elsevier
Abstract Process Systems Engineering (PSE) is the scientific discipline of integrating scales
and components describing the behavior of a physicochemical system, via mathematical …

Machine learning in chemical engineering: A perspective

AM Schweidtmann, E Esche, A Fischer… - Chemie Ingenieur …, 2021 - Wiley Online Library
The transformation of the chemical industry to renewable energy and feedstock supply
requires new paradigms for the design of flexible plants,(bio‐) catalysts, and functional …

[HTML][HTML] Marine energy digitalization digital twin's approaches

MM Nezhad, M Neshat, G Sylaios, DA Garcia - Renewable and Sustainable …, 2024 - Elsevier
Digital twins (DTs) promise innovation for the marine renewable energy sector using modern
technological advances and the existing maritime knowledge frameworks. The DT is a …

Strong mixed-integer programming formulations for trained neural networks

R Anderson, J Huchette, W Ma… - Mathematical …, 2020 - Springer
We present strong mixed-integer programming (MIP) formulations for high-dimensional
piecewise linear functions that correspond to trained neural networks. These formulations …

OMLT: Optimization & machine learning toolkit

F Ceccon, J Jalving, J Haddad, A Thebelt… - Journal of Machine …, 2022 - jmlr.org
The optimization and machine learning toolkit (OMLT) is an open-source software package
incorporating neural network and gradient-boosted tree surrogate models, which have been …

[HTML][HTML] A review on superstructure optimization approaches in process system engineering

L Mencarelli, Q Chen, A Pagot, IE Grossmann - Computers & Chemical …, 2020 - Elsevier
In this paper, we survey the main superstructure-based approaches in process system
engineering, with a particular emphasis on the existing literature for automated …

Machine learning in process systems engineering: Challenges and opportunities

P Daoutidis, JH Lee, S Rangarajan, L Chiang… - Computers & Chemical …, 2024 - Elsevier
This “white paper” is a concise perspective of the potential of machine learning in the
process systems engineering (PSE) domain, based on a session during FIPSE 5, held in …