Genomic selection in plant breeding: methods, models, and perspectives

J Crossa, P Pérez-Rodríguez, J Cuevas… - Trends in plant …, 2017 - cell.com
Genomic selection (GS) facilitates the rapid selection of superior genotypes and accelerates
the breeding cycle. In this review, we discuss the history, principles, and basis of GS and …

Enhancing genetic gain through genomic selection: from livestock to plants

Y Xu, X Liu, J Fu, H Wang, J Wang, C Huang… - Plant …, 2020 - cell.com
Although long-term genetic gain has been achieved through increasing use of modern
breeding methods and technologies, the rate of genetic gain needs to be accelerated to …

Nonlinear kernels, dominance, and envirotyping data increase the accuracy of genome-based prediction in multi-environment trials

G Costa-Neto, R Fritsche-Neto, J Crossa - Heredity, 2021 - nature.com
Modern whole-genome prediction (WGP) frameworks that focus on multi-environment trials
(MET) integrate large-scale genomics, phenomics, and envirotyping data. However, the …

BGGE: a new package for genomic-enabled prediction incorporating genotype× environment interaction models

I Granato, J Cuevas, F Luna-Vázquez… - G3: Genes …, 2018 - academic.oup.com
One of the major issues in plant breeding is the occurrence of genotype× environment (GE)
interaction. Several models have been created to understand this phenomenon and explore …

Selection of the bandwidth parameter in a Bayesian kernel regression model for genomic-enabled prediction

S Pérez-Elizalde, J Cuevas, P Pérez-Rodríguez… - Journal of agricultural …, 2015 - Springer
One of the most widely used kernel functions in genomic-enabled prediction is the Gaussian
kernel. Selection of the bandwidth parameter for kernel regression has generally been …

[HTML][HTML] Hyper-seq Technology and Genome-Wide Selection Breeding of Soybeans

Q Wang, M He, Y Zhou, R Xu, T Liang, S Pei, J Chen… - Agronomy, 2025 - mdpi.com
Soybeans (Glycine max (L.) Merr.) are a multifunctional crop that contributes significantly to
global food security, economic development, and agricultural sustainability. Genomic …

Variable selection models for genomic selection using whole-genome sequence data and singular value decomposition

THE Meuwissen, UG Indahl, J Ødegård - Genetics Selection Evolution, 2017 - Springer
Abstract Background Non-linear Bayesian genomic prediction models such as
BayesA/B/C/R involve iteration and mostly Markov chain Monte Carlo (MCMC) algorithms …

Statistical learning based on vine copulas with societal applications

Ö Şahin - 2023 - mediatum.ub.tum.de
Statistical learning literature has been tremendously growing in recent years. However,
modeling complex dependence structures explicitly and interpreting model results for …

[PDF][PDF] Изучение генетического контроля мясной продуктивности овец с использованием современных методов количественной генетики

АС ЗЛОБИН - Генетика - icgbio.ru
Селекция домашних животных занимает большое место в научных исследованиях
различных государств. Создание новых и улучшение уже существующих пород …

Enviromics, nonlinear kernels and optimized training sets for a climate-smart genomic prediction of yield plasticity in maize

GMF Costa Neto - 2021 - teses.usp.br
Large-scale envirotyping (environmental+ typing) or simply enviromics, is an emerging field
of data science, applied both in agronomic research and plant breeding. This omics consists …