Stokesian processes: inferring Stokes flows using physics-informed Gaussian processes

JJ Molina, K Ogawa, T Taniguchi - Machine Learning: Science …, 2023 - iopscience.iop.org
We develop a probabilistic Stokes flow framework, using physics informed Gaussian
processes, which can be used to solve both forward/inverse flow problems with missing …

Data-driven identification of port-Hamiltonian DAE systems by Gaussian processes

P Zaspel, M Günther - arXiv preprint arXiv:2406.18726, 2024 - arxiv.org
Port-Hamiltonian systems (pHS) allow for a structure-preserving modeling of dynamical
systems. Coupling pHS via linear relations between input and output defines an overall …

[HTML][HTML] Symplectic neural Gaussian processes for meta-learning Hamiltonian dynamics

T Iwata, Y Tanaka - Proceedings of the Thirty-Third International Joint …, 2024 - dl.acm.org
We propose a meta-learning method for modeling Hamiltonian dynamics from a limited
number of data. Although Hamiltonian neural networks have been successfully used for …

Noether's razor: Learning Conserved Quantities

TFA van der Ouderaa, M van der Wilk… - arXiv preprint arXiv …, 2024 - arxiv.org
Symmetries have proven useful in machine learning models, improving generalisation and
overall performance. At the same time, recent advancements in learning dynamical systems …

Neural Operators Meet Energy-based Theory: Operator Learning for Hamiltonian and Dissipative PDEs

Y Tanaka, T Yaguchi, T Iwata, N Ueda - arXiv preprint arXiv:2402.09018, 2024 - arxiv.org
The operator learning has received significant attention in recent years, with the aim of
learning a mapping between function spaces. Prior works have proposed deep neural …

Learning Energy Conserving Dynamics Efficiently with Hamiltonian Gaussian Processes

M Ross, M Heinonen - arXiv preprint arXiv:2303.01925, 2023 - arxiv.org
Hamiltonian mechanics is one of the cornerstones of natural sciences. Recently there has
been significant interest in learning Hamiltonian systems in a free-form way directly from …

Advances in Physics-Informed Gaussian Process Regression

M Ross - 2024 - search.proquest.com
Gaussian processes are powerful models for probabilistic machine learning and are often
employed because they can accurately quantify uncertainty, are analytically tractable, and …

Learning of Nonlinear Dynamics with Contraction-Based Regularization

HT Phan, VT Kenworthy - 2023 - ntnuopen.ntnu.no
Å lære ukjente dynamiske systemer er en kompleks oppgave som involverer å utlede den
underliggende systematferden fra observert data, uten forkunnskaper om de underliggende …

[PDF][PDF] LEARNING HAMILTONIAN DYNAMICS UNDER UNCERTAINTY VIA SYMPLECTIC GAUSSIAN PROCESSES

Y Tanaka - scml.jp
This paper focuses on a research question: How do we infer Hamiltonian vector fields under
uncertainty from data? One promising approach is a Gaussian process (GP) that can …

ガウス過程と物理現象のモデル化

田中佑典 - 人工知能, 2023 - jstage.jst.go.jp
ガウス過程と物理現象のモデル化 Page 1 318 人 工 知 能 38 巻 3 号(2023 年 5 月) 1. はじめに
物理学や生物学などさまざまな自然科学分野にお いて,多くの自然現象のダイナミクスは常微分 …