Counterfactual explanations and how to find them: literature review and benchmarking

R Guidotti - Data Mining and Knowledge Discovery, 2024 - Springer
Interpretable machine learning aims at unveiling the reasons behind predictions returned by
uninterpretable classifiers. One of the most valuable types of explanation consists of …

A systematic review of explainable artificial intelligence in terms of different application domains and tasks

MR Islam, MU Ahmed, S Barua, S Begum - Applied Sciences, 2022 - mdpi.com
Artificial intelligence (AI) and machine learning (ML) have recently been radically improved
and are now being employed in almost every application domain to develop automated or …

[PDF][PDF] Counterfactual explanations for machine learning: A review

S Verma, J Dickerson, K Hines - arXiv preprint arXiv …, 2020 - ml-retrospectives.github.io
Abstract Machine learning plays a role in many deployed decision systems, often in ways
that are difficult or impossible to understand by human stakeholders. Explaining, in a human …

A survey of contrastive and counterfactual explanation generation methods for explainable artificial intelligence

I Stepin, JM Alonso, A Catala, M Pereira-Fariña - IEEE Access, 2021 - ieeexplore.ieee.org
A number of algorithms in the field of artificial intelligence offer poorly interpretable
decisions. To disclose the reasoning behind such algorithms, their output can be explained …

Data-centric artificial intelligence: A survey

D Zha, ZP Bhat, KH Lai, F Yang, Z Jiang… - ACM Computing …, 2023 - dl.acm.org
Artificial Intelligence (AI) is making a profound impact in almost every domain. A vital enabler
of its great success is the availability of abundant and high-quality data for building machine …

Counterfactuals and causability in explainable artificial intelligence: Theory, algorithms, and applications

YL Chou, C Moreira, P Bruza, C Ouyang, J Jorge - Information Fusion, 2022 - Elsevier
Deep learning models have achieved high performance across different domains, such as
medical decision-making, autonomous vehicles, decision support systems, among many …

Interpretable counterfactual explanations guided by prototypes

A Van Looveren, J Klaise - Joint European Conference on Machine …, 2021 - Springer
We propose a fast, model agnostic method for finding interpretable counterfactual
explanations of classifier predictions by using class prototypes. We show that class …

Counterfactual explanations and algorithmic recourses for machine learning: A review

S Verma, V Boonsanong, M Hoang, K Hines… - ACM Computing …, 2024 - dl.acm.org
Machine learning plays a role in many deployed decision systems, often in ways that are
difficult or impossible to understand by human stakeholders. Explaining, in a human …

The dangers of post-hoc interpretability: Unjustified counterfactual explanations

T Laugel, MJ Lesot, C Marsala, X Renard… - arXiv preprint arXiv …, 2019 - arxiv.org
Post-hoc interpretability approaches have been proven to be powerful tools to generate
explanations for the predictions made by a trained black-box model. However, they create …

Instance-based counterfactual explanations for time series classification

E Delaney, D Greene, MT Keane - International conference on case …, 2021 - Springer
In recent years, there has been a rapidly expanding focus on explaining the predictions
made by black-box AI systems that handle image and tabular data. However, considerably …