Condensation inversion and Witt equivalence via generalised orbifolds

V Mulevicius - arXiv preprint arXiv:2206.02611, 2022 - arxiv.org
In Mulevi\v {c} ius-Runkel, arXiv: 2002.00663, it was shown how a so-called orbifold datum
$\mathbb {A} $ in a given modular fusion category (MFC) $\mathcal {C} $ produces a new …

Spontaneous symmetry breaking from anyon condensation

M Bischoff, C Jones, YM Lu, D Penneys - Journal of High Energy Physics, 2019 - Springer
A bstract In a physical system undergoing a continuous quantum phase transition,
spontaneous symmetry breaking occurs when certain symmetries of the Hamiltonian fail to …

Classification of connected\'etale algebras in modular fusion categories up to rank five

K Kikuchi - arXiv preprint arXiv:2312.13353, 2023 - arxiv.org
We classify connected\'etale algebras in (possibly non-unitary) modular fusion categories
$\mathcal B $'s with $\text {rank}(\mathcal B)\le5 $. We also comment on Lagrangian …

Classification of connected\'etale algebras in pre-modular fusion categories up to rank three

K Kikuchi - arXiv preprint arXiv:2311.15631, 2023 - arxiv.org
We classify connected\'etale algebras $ A $'s in pre-modular fusion categories $\mathcal B $
with $\text {rank}(\mathcal B)\le3 $ including degenerate and non-(pseudo-) unitary ones …

Constructing modular categories from orbifold data

V Mulevičius, I Runkel - Quantum Topology, 2023 - content.ems.press
The notion of an orbifold datum A in a modular fusion category C was introduced as part of a
generalised orbifold construction for Reshetikhin–Turaev TQFTs by Carqueville, Runkel …

In and around Abelian anyon models

L Wang, Z Wang - Journal of Physics A: Mathematical and …, 2020 - iopscience.iop.org
Anyon models are algebraic structures that model universal topological properties in
topological phases of matter and can be regarded as mathematical characterization of …

Classification of connected\'etale algebras in multiplicity-free modular fusion categories up to rank nine

K Kikuchi - arXiv preprint arXiv:2404.16125, 2024 - arxiv.org
We classify connected\'etale algebras $ A $'s in multiplicity-free modular fusion categories
$\mathcal B $'s with $\text {rank}(\mathcal B)\le9 $. We also identify categories $\mathcal …

[HTML][HTML] Fusing binary interface defects in topological phases: The Z/pZ case

JC Bridgeman, D Barter, C Jones - Journal of Mathematical Physics, 2019 - pubs.aip.org
A binary interface defect is any interface between two (not necessarily invertible) domain
walls. We compute all possible binary interface defects in Kitaev's Z/p Z model and all …

Domain Walls in Topological Phases and the Brauer–Picard Ring for

D Barter, JC Bridgeman, C Jones - Communications in Mathematical …, 2019 - Springer
We show how to calculate the relative tensor product of bimodule categories (not
necessarily invertible) using ladder string diagrams. As an illustrative example, we compute …

Fibonacci-type orbifold data in Ising modular categories

V Mulevičius, I Runkel - Journal of Pure and Applied Algebra, 2023 - Elsevier
An orbifold datum is a collection A of algebraic data in a modular fusion category C. It allows
one to define a new modular fusion category CA in a construction that is a generalisation of …