Advances, challenges and opportunities in creating data for trustworthy AI

W Liang, GA Tadesse, D Ho, L Fei-Fei… - Nature Machine …, 2022 - nature.com
As artificial intelligence (AI) transitions from research to deployment, creating the appropriate
datasets and data pipelines to develop and evaluate AI models is increasingly the biggest …

A review on fairness in machine learning

D Pessach, E Shmueli - ACM Computing Surveys (CSUR), 2022 - dl.acm.org
An increasing number of decisions regarding the daily lives of human beings are being
controlled by artificial intelligence and machine learning (ML) algorithms in spheres ranging …

Machine learning for synthetic data generation: a review

Y Lu, M Shen, H Wang, X Wang, C van Rechem… - arXiv preprint arXiv …, 2023 - arxiv.org
Machine learning heavily relies on data, but real-world applications often encounter various
data-related issues. These include data of poor quality, insufficient data points leading to …

Evaluating the social impact of generative ai systems in systems and society

I Solaiman, Z Talat, W Agnew, L Ahmad… - arXiv preprint arXiv …, 2023 - arxiv.org
Generative AI systems across modalities, ranging from text, image, audio, and video, have
broad social impacts, but there exists no official standard for means of evaluating those …

A field guide to federated optimization

J Wang, Z Charles, Z Xu, G Joshi, HB McMahan… - arXiv preprint arXiv …, 2021 - arxiv.org
Federated learning and analytics are a distributed approach for collaboratively learning
models (or statistics) from decentralized data, motivated by and designed for privacy …

A survey on security and privacy of federated learning

V Mothukuri, RM Parizi, S Pouriyeh, Y Huang… - Future Generation …, 2021 - Elsevier
Federated learning (FL) is a new breed of Artificial Intelligence (AI) that builds upon
decentralized data and training that brings learning to the edge or directly on-device. FL is a …

Language (technology) is power: A critical survey of" bias" in nlp

SL Blodgett, S Barocas, H Daumé III… - arXiv preprint arXiv …, 2020 - arxiv.org
We survey 146 papers analyzing" bias" in NLP systems, finding that their motivations are
often vague, inconsistent, and lacking in normative reasoning, despite the fact that …

Survey on federated learning threats: Concepts, taxonomy on attacks and defences, experimental study and challenges

N Rodríguez-Barroso, D Jiménez-López, MV Luzón… - Information …, 2023 - Elsevier
Federated learning is a machine learning paradigm that emerges as a solution to the privacy-
preservation demands in artificial intelligence. As machine learning, federated learning is …

Advances and open problems in federated learning

P Kairouz, HB McMahan, B Avent… - … and trends® in …, 2021 - nowpublishers.com
Federated learning (FL) is a machine learning setting where many clients (eg, mobile
devices or whole organizations) collaboratively train a model under the orchestration of a …

What neural networks memorize and why: Discovering the long tail via influence estimation

V Feldman, C Zhang - Advances in Neural Information …, 2020 - proceedings.neurips.cc
Deep learning algorithms are well-known to have a propensity for fitting the training data
very well and often fit even outliers and mislabeled data points. Such fitting requires …