Parallel memetic algorithm for training recurrent neural networks for the energy efficiency problem

LGB Ruíz, MI Capel, MC Pegalajar - Applied Soft Computing, 2019 - Elsevier
In our state-of-the-art study, we improve neural network-based models for predicting energy
consumption in buildings by parallelizing the CHC adaptive search algorithm. We compared …

A novel analytical-ANN hybrid model for Borehole heat exchanger

AR Puttige, S Andersson, R Östin, T Olofsson - Energies, 2020 - mdpi.com
Optimizing the operation of ground source heat pumps requires simulation of both short-term
and long-term response of the borehole heat exchanger. However, the current physical and …

Data-driven model reduction of the moving boundary heat pump dynamic model

R Song, G Yon, T Hamacher… - 2022 IEEE Power & …, 2022 - ieeexplore.ieee.org
Heat pump systems have the potential to be used as controllable load to compensate for the
uncertainties in modern power systems. The moving boundary model for heat pumps is …

Dynamic predictive modeling approach of user behavior in virtual reality based application

A Köse, A Tepljakov, E Petlenkov - 2019 27th Mediterranean …, 2019 - ieeexplore.ieee.org
Virtual Reality (VR) is considered to be a powerful modern medium for immersive data
visualization and exploration. However, few studies have proposed solutions to complement …

Towards Assisting Interactive Reality: Interactive Reality for Education, Data Analysis and Industry

A Kose, A Tepljakov, E Petlenkov - … , AVR 2018, Otranto, Italy, June 24–27 …, 2018 - Springer
This paper addresses an interactive virtual reality based application of a physical
environment. The application presents notable aspects for education, data analysis and …

On Hammerstein and Wiener structure for data driven modelling in complex and nonlinear systems; A case study in smart building integrated microgrid

RF Iskandar, E Leksono, E Joelianto… - AIP Conference …, 2023 - pubs.aip.org
Smart building integrated microgrid development shows attractive progress in research and
application. Related structures of smart building and microgrid growth are more and more …

[PDF][PDF] Modellierung dynamischer prozesse mit deep neural networks am beispiel einer gasabsorptionswärmepumpe

J Lippel, M Becker, L Frank, J Goebel… - Deutsche Kälte-und …, 2017 - researchgate.net
Kurzfassung Die Entwicklung mathematischer Computermodelle zur Simulation
dynamischer Prozesse ist aufwendig und zeitintensiv. Um diesen Vorgang zu …

[PDF][PDF] Modeling Dynamic Processes with Deep Neural Networks: A Case Study with a Gas-fired Absorption Heat Pump.

J Lippel, M Becker, T Zielke - SIMULTECH, 2019 - academia.edu
Deriving mathematical models for the simulation of dynamic processes is costly and time-
consuming. This paper examines the possibilities of deep neural networks (DNNs) as a …

[PDF][PDF] Підходи до інтеграції нейронних мереж у MATLAB для задач моделювання теплонасосних установок

В Волощук, М Богза - itconfdoc.nuwm.edu.ua
У статті розглянуто інтеграцію нейронних мереж для моделювання теплонасосних
установок у MATLAB Simulink. Використано модель LSTM для прогнозування …

[PDF][PDF] Modeling Dynamic Processes with Deep Neural Networks

J Lippel, M Becker, T Zielke - researchgate.net
Deriving mathematical models for the simulation of dynamic processes is costly and time-
consuming. This paper examines the possibilities of deep neural networks (DNNs) as a …