A review of physics simulators for robotic applications

J Collins, S Chand, A Vanderkop, D Howard - IEEE Access, 2021 - ieeexplore.ieee.org
The use of simulators in robotics research is widespread, underpinning the majority of recent
advances in the field. There are now more options available to researchers than ever before …

Reinforcement learning in robotic applications: a comprehensive survey

B Singh, R Kumar, VP Singh - Artificial Intelligence Review, 2022 - Springer
In recent trends, artificial intelligence (AI) is used for the creation of complex automated
control systems. Still, researchers are trying to make a completely autonomous system that …

Bc-z: Zero-shot task generalization with robotic imitation learning

E Jang, A Irpan, M Khansari… - … on Robot Learning, 2022 - proceedings.mlr.press
In this paper, we study the problem of enabling a vision-based robotic manipulation system
to generalize to novel tasks, a long-standing challenge in robot learning. We approach the …

Deep reinforcement learning for autonomous driving: A survey

BR Kiran, I Sobh, V Talpaert, P Mannion… - IEEE Transactions …, 2021 - ieeexplore.ieee.org
With the development of deep representation learning, the domain of reinforcement learning
(RL) has become a powerful learning framework now capable of learning complex policies …

[图书][B] Synthetic data for deep learning

SI Nikolenko - 2021 - Springer
You are holding in your hands… oh, come on, who holds books like this in their hands
anymore? Anyway, you are reading this, and it means that I have managed to release one of …

Parallel learning: Overview and perspective for computational learning across Syn2Real and Sim2Real

Q Miao, Y Lv, M Huang, X Wang… - IEEE/CAA Journal of …, 2023 - ieeexplore.ieee.org
The virtual-to-real paradigm, ie, training models on virtual data and then applying them to
solve real-world problems, has attracted more and more attention from various domains by …

Gibson env: Real-world perception for embodied agents

F Xia, AR Zamir, Z He, A Sax, J Malik… - Proceedings of the …, 2018 - openaccess.thecvf.com
Perception and being active (having a certain level of motion freedom) are closely tied.
Learning active perception and sensorimotor control in the physical world is cumbersome as …

Sim-to-real via sim-to-sim: Data-efficient robotic grasping via randomized-to-canonical adaptation networks

S James, P Wohlhart, M Kalakrishnan… - Proceedings of the …, 2019 - openaccess.thecvf.com
Real world data, especially in the domain of robotics, is notoriously costly to collect. One way
to circumvent this can be to leverage the power of simulation to produce large amounts of …

A survey of deep RL and IL for autonomous driving policy learning

Z Zhu, H Zhao - IEEE Transactions on Intelligent Transportation …, 2021 - ieeexplore.ieee.org
Autonomous driving (AD) agents generate driving policies based on online perception
results, which are obtained at multiple levels of abstraction, eg, behavior planning, motion …

A survey of end-to-end driving: Architectures and training methods

A Tampuu, T Matiisen, M Semikin… - … on Neural Networks …, 2020 - ieeexplore.ieee.org
Autonomous driving is of great interest to industry and academia alike. The use of machine
learning approaches for autonomous driving has long been studied, but mostly in the …