Single and multi-agent deep reinforcement learning for AI-enabled wireless networks: A tutorial

A Feriani, E Hossain - IEEE Communications Surveys & …, 2021 - ieeexplore.ieee.org
Deep Reinforcement Learning (DRL) has recently witnessed significant advances that have
led to multiple successes in solving sequential decision-making problems in various …

Deep learning for intelligent wireless networks: A comprehensive survey

Q Mao, F Hu, Q Hao - IEEE Communications Surveys & …, 2018 - ieeexplore.ieee.org
As a promising machine learning tool to handle the accurate pattern recognition from
complex raw data, deep learning (DL) is becoming a powerful method to add intelligence to …

RouteNet: Leveraging graph neural networks for network modeling and optimization in SDN

K Rusek, J Suárez-Varela, P Almasan… - IEEE Journal on …, 2020 - ieeexplore.ieee.org
Network modeling is a key enabler to achieve efficient network operation in future self-
driving Software-Defined Networks. However, we still lack functional network models able to …

Reinforcement learning based routing in networks: Review and classification of approaches

Z Mammeri - Ieee Access, 2019 - ieeexplore.ieee.org
Reinforcement learning (RL), which is a class of machine learning, provides a framework by
which a system can learn from its previous interactions with its environment to efficiently …

Ns-3 meets openai gym: The playground for machine learning in networking research

P Gawłowicz, A Zubow - Proceedings of the 22nd International ACM …, 2019 - dl.acm.org
Recently, we have seen a boom of attempts to improve the operation of networking protocols
using machine learning techniques. The proposed reinforcement learning (RL) based …

Deep reinforcement learning meets graph neural networks: Exploring a routing optimization use case

P Almasan, J Suárez-Varela, K Rusek… - Computer …, 2022 - Elsevier
Abstract Deep Reinforcement Learning (DRL) has shown a dramatic improvement in
decision-making and automated control problems. Consequently, DRL represents a …

Network planning with deep reinforcement learning

H Zhu, V Gupta, SS Ahuja, Y Tian, Y Zhang… - Proceedings of the 2021 …, 2021 - dl.acm.org
Network planning is critical to the performance, reliability and cost of web services. This
problem is typically formulated as an Integer Linear Programming (ILP) problem. Today's …

未来网络技术与发展趋势综述

黄韬, 刘江, 汪硕, 张晨, 刘韵洁 - 通信学报, 2021 - infocomm-journal.com
对面向2030 的未来网络领域的发展趋势进行了综述. 首先, 介绍了网络体系架构和试验设施领域
的研究进展; 其次, 从网络控制与编排, 网络深度可编程, 网络确定性服务, 网络计算存储一体化 …

Intelligent routing based on reinforcement learning for software-defined networking

DM Casas-Velasco, OMC Rendon… - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
Traditional routing protocols employ limited information to make routing decisions, which
can lead to a slow adaptation to traffic variability, as well as restricted support to the Quality …

Unveiling the potential of graph neural networks for network modeling and optimization in SDN

K Rusek, J Suárez-Varela, A Mestres… - Proceedings of the …, 2019 - dl.acm.org
Network modeling is a critical component for building self-driving Software-Defined
Networks, particularly to find optimal routing schemes that meet the goals set by …