An accurate spectral collocation method for nonlinear systems of fractional differential equations and related integral equations with nonsmooth solutions

MA Zaky - Applied Numerical Mathematics, 2020 - Elsevier
This paper aims to provide a rigorous analysis of exponential convergence of an adaptive
spectral collocation method for a general nonlinear system of rational-order fractional initial …

Sinc-Galerkin method for solving the time fractional convection–diffusion equation with variable coefficients

LJ Chen, MZ Li, Q Xu - Advances in Difference Equations, 2020 - Springer
In this paper, a new numerical algorithm for solving the time fractional convection–diffusion
equation with variable coefficients is proposed. The time fractional derivative is estimated …

[HTML][HTML] New fractional Lanczos vector polynomials and their application to system of Abel–Volterra integral equations and fractional differential equations

D Conte, S Shahmorad, Y Talaei - Journal of Computational and Applied …, 2020 - Elsevier
In this paper, the recursive approach of the τ-method is developed to construct new
fractional order canonical polynomials for solving systems of Abel–Volterra integral …

Spectral approximated superconvergent methods for system of nonlinear Volterra Hammerstein integral equations

S Chakraborty, SK Agrawal, G Nelakanti - Chaos, Solitons & Fractals, 2025 - Elsevier
In this article, we develop the Jacobi spectral multi-Galerkin method alongside the Kumar-
Sloan technique to approximate systems of non-linear Volterra Hammerstein integral …

[HTML][HTML] Runge-Kutta method and Bolck by Block method to solve nonlinear Fredholm-Volterra integral equation with continuous kernel

AM Al-Bugami, JG Al-Juaid - Journal of Applied Mathematics and …, 2020 - scirp.org
In this paper, the existence and uniqueness of the solution of Fredholm-Volterra integral
equation is considered (NF-VIE) with continuous kernel; then we used a numerical method …

Superconvergence of system of Volterra integral equations by spectral approximation method

S Chakraborty, G Nelakanti - Applied Mathematics and Computation, 2023 - Elsevier
In this article, we apply Jacobi spectral Galerkin, multi-Galerkin methods and their iterated
versions to approximate the system of Volterra integral equations for smooth as well as …

Boubaker operational matrix method for solving fractional weakly singular two-dimensional partial Volterra integral equation

AA Khajehnasiri, A Ebadian - Journal of Applied Mathematics and …, 2024 - Springer
The aim of the present paper is to suggest a novel technique based on the operational
matrix approach for solving a fractional weakly singular two-dimensional partial Volterra …

[PDF][PDF] Derivative sampling expansions for the linear canonical transform: convergence and error analysis

MH Annaby, RM Asharabi - J. Comput. Math., 2019 - researchgate.net
In recent decades, the fractional Fourier transform as well as the linear canonical transform
became very efficient tools in a variety of approximation and signal processing applications …

A combination method for solving multi-dimensional systems of Volterra integral equations with weakly singular kernels

Y Wang, J Huang, L Zhang, T Deng - Numerical Algorithms, 2022 - Springer
In this paper, we proposed an efficient approach for solving the multi-dimensional systems of
weakly singular Volterra integral equations (SVIEs). The solution of these equations may be …

Numerical solutions and error analysis of system of two-dimensional Volterra integral equations via Block-Pulse functions

A Karimi, K Maleknejad, R Ezzati - Computational Methods for …, 2025 - cmde.tabrizu.ac.ir
This paper tries to provide an attractive framework based on Block-Pulse functions for
numerical solution of a system of two-dimensional Volterra integral equations of the second …