Artificial intelligence for remote sensing data analysis: A review of challenges and opportunities

L Zhang, L Zhang - IEEE Geoscience and Remote Sensing …, 2022 - ieeexplore.ieee.org
Artificial intelligence (AI) plays a growing role in remote sensing (RS). Applications of AI,
particularly machine learning algorithms, range from initial image processing to high-level …

Deep learning-based change detection in remote sensing images: A review

A Shafique, G Cao, Z Khan, M Asad, M Aslam - Remote Sensing, 2022 - mdpi.com
Images gathered from different satellites are vastly available these days due to the fast
development of remote sensing (RS) technology. These images significantly enhance the …

Change detection based on artificial intelligence: State-of-the-art and challenges

W Shi, M Zhang, R Zhang, S Chen, Z Zhan - Remote Sensing, 2020 - mdpi.com
Change detection based on remote sensing (RS) data is an important method of detecting
changes on the Earth's surface and has a wide range of applications in urban planning …

Classification of hyperspectral image based on double-branch dual-attention mechanism network

R Li, S Zheng, C Duan, Y Yang, X Wang - Remote Sensing, 2020 - mdpi.com
In recent years, researchers have paid increasing attention on hyperspectral image (HSI)
classification using deep learning methods. To improve the accuracy and reduce the training …

Unsupervised deep change vector analysis for multiple-change detection in VHR images

S Saha, F Bovolo, L Bruzzone - IEEE transactions on …, 2019 - ieeexplore.ieee.org
Change detection (CD) in multitemporal images is an important application of remote
sensing. Recent technological evolution provided very high spatial resolution (VHR) …

A feature difference convolutional neural network-based change detection method

M Zhang, W Shi - IEEE Transactions on Geoscience and …, 2020 - ieeexplore.ieee.org
Change detection based on remote sensing (RS) images has a wide range of applications
in many fields. However, many existing approaches for detecting changes in RS images with …

Deep feature aggregation framework driven by graph convolutional network for scene classification in remote sensing

K Xu, H Huang, P Deng, Y Li - IEEE Transactions on Neural …, 2021 - ieeexplore.ieee.org
Scene classification of high spatial resolution (HSR) images can provide data support for
many practical applications, such as land planning and utilization, and it has been a crucial …

Machine learning in computer vision: a review

AA Khan, AA Laghari, SA Awan - EAI Endorsed Transactions on …, 2021 - publications.eai.eu
INTRODUCTION: Due to the advancement in the field of Artificial Intelligence (AI), the ability
to tackle entire problems of machine intelligence. Nowadays, Machine learning (ML) is …

A survey on cooperative co-evolutionary algorithms

X Ma, X Li, Q Zhang, K Tang, Z Liang… - IEEE Transactions on …, 2018 - ieeexplore.ieee.org
The first cooperative co-evolutionary algorithm (CCEA) was proposed by Potter and De Jong
in 1994 and since then many CCEAs have been proposed and successfully applied to …

Vision transformer: An excellent teacher for guiding small networks in remote sensing image scene classification

K Xu, P Deng, H Huang - IEEE Transactions on Geoscience …, 2022 - ieeexplore.ieee.org
Scene classification is an active research topic in the remote sensing community, and
complex spatial layouts with various types of objects bring huge challenges to classification …