Towards continual reinforcement learning: A review and perspectives

K Khetarpal, M Riemer, I Rish, D Precup - Journal of Artificial Intelligence …, 2022 - jair.org
In this article, we aim to provide a literature review of different formulations and approaches
to continual reinforcement learning (RL), also known as lifelong or non-stationary RL. We …

[HTML][HTML] The free energy principle made simpler but not too simple

K Friston, L Da Costa, N Sajid, C Heins, K Ueltzhöffer… - Physics Reports, 2023 - Elsevier
This paper provides a concise description of the free energy principle, starting from a
formulation of random dynamical systems in terms of a Langevin equation and ending with a …

A distributional code for value in dopamine-based reinforcement learning

W Dabney, Z Kurth-Nelson, N Uchida, CK Starkweather… - Nature, 2020 - nature.com
Since its introduction, the reward prediction error theory of dopamine has explained a wealth
of empirical phenomena, providing a unifying framework for understanding the …

[HTML][HTML] Challenges and opportunities for grounding cognition

LW Barsalou - Journal of Cognition, 2020 - ncbi.nlm.nih.gov
According to the grounded perspective, cognition emerges from the interaction of classic
cognitive processes with the modalities, the body, and the environment. Rather than being …

Deep reinforcement learning and its neuroscientific implications

M Botvinick, JX Wang, W Dabney, KJ Miller… - Neuron, 2020 - cell.com
The emergence of powerful artificial intelligence (AI) is defining new research directions in
neuroscience. To date, this research has focused largely on deep neural networks trained …

Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation

TD Kulkarni, K Narasimhan, A Saeedi… - Advances in neural …, 2016 - proceedings.neurips.cc
Learning goal-directed behavior in environments with sparse feedback is a major challenge
for reinforcement learning algorithms. One of the key difficulties is insufficient exploration …

Intelligent problem-solving as integrated hierarchical reinforcement learning

M Eppe, C Gumbsch, M Kerzel, PDH Nguyen… - Nature Machine …, 2022 - nature.com
According to cognitive psychology and related disciplines, the development of complex
problem-solving behaviour in biological agents depends on hierarchical cognitive …

Adaptive feature fusion: enhancing generalization in deep learning models

N Mungoli - arXiv preprint arXiv:2304.03290, 2023 - arxiv.org
In recent years, deep learning models have demonstrated remarkable success in various
domains, such as computer vision, natural language processing, and speech recognition …

A gradual temporal shift of dopamine responses mirrors the progression of temporal difference error in machine learning

R Amo, S Matias, A Yamanaka, KF Tanaka… - Nature …, 2022 - nature.com
A large body of evidence has indicated that the phasic responses of midbrain dopamine
neurons show a remarkable similarity to a type of teaching signal (temporal difference (TD) …

[HTML][HTML] Toward an integration of deep learning and neuroscience

AH Marblestone, G Wayne, KP Kording - Frontiers in computational …, 2016 - frontiersin.org
Neuroscience has focused on the detailed implementation of computation, studying neural
codes, dynamics and circuits. In machine learning, however, artificial neural networks tend …