A review on fairness in machine learning

D Pessach, E Shmueli - ACM Computing Surveys (CSUR), 2022 - dl.acm.org
An increasing number of decisions regarding the daily lives of human beings are being
controlled by artificial intelligence and machine learning (ML) algorithms in spheres ranging …

A survey of algorithmic recourse: contrastive explanations and consequential recommendations

AH Karimi, G Barthe, B Schölkopf, I Valera - ACM Computing Surveys, 2022 - dl.acm.org
Machine learning is increasingly used to inform decision making in sensitive situations
where decisions have consequential effects on individuals' lives. In these settings, in …

Openxai: Towards a transparent evaluation of model explanations

C Agarwal, S Krishna, E Saxena… - Advances in neural …, 2022 - proceedings.neurips.cc
While several types of post hoc explanation methods have been proposed in recent
literature, there is very little work on systematically benchmarking these methods. Here, we …

Bias mitigation for machine learning classifiers: A comprehensive survey

M Hort, Z Chen, JM Zhang, M Harman… - ACM Journal on …, 2024 - dl.acm.org
This article provides a comprehensive survey of bias mitigation methods for achieving
fairness in Machine Learning (ML) models. We collect a total of 341 publications concerning …

A survey on datasets for fairness‐aware machine learning

T Le Quy, A Roy, V Iosifidis, W Zhang… - … Reviews: Data Mining …, 2022 - Wiley Online Library
As decision‐making increasingly relies on machine learning (ML) and (big) data, the issue
of fairness in data‐driven artificial intelligence systems is receiving increasing attention from …

[HTML][HTML] Asynchronous federated learning on heterogeneous devices: A survey

C Xu, Y Qu, Y Xiang, L Gao - Computer Science Review, 2023 - Elsevier
Federated learning (FL) is a kind of distributed machine learning framework, where the
global model is generated on the centralized aggregation server based on the parameters of …

The random forest algorithm for statistical learning

M Schonlau, RY Zou - The Stata Journal, 2020 - journals.sagepub.com
Random forests (Breiman, 2001, Machine Learning 45: 5–32) is a statistical-or machine-
learning algorithm for prediction. In this article, we introduce a corresponding new …

Vertical federated learning: Concepts, advances, and challenges

Y Liu, Y Kang, T Zou, Y Pu, Y He, X Ye… - … on Knowledge and …, 2024 - ieeexplore.ieee.org
Vertical Federated Learning (VFL) is a federated learning setting where multiple parties with
different features about the same set of users jointly train machine learning models without …

Fairness in graph mining: A survey

Y Dong, J Ma, S Wang, C Chen… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Graph mining algorithms have been playing a significant role in myriad fields over the years.
However, despite their promising performance on various graph analytical tasks, most of …

Towards a unified framework for fair and stable graph representation learning

C Agarwal, H Lakkaraju… - Uncertainty in Artificial …, 2021 - proceedings.mlr.press
As the representations output by Graph Neural Networks (GNNs) are increasingly employed
in real-world applications, it becomes important to ensure that these representations are fair …