Algorithmic fairness in artificial intelligence for medicine and healthcare

RJ Chen, JJ Wang, DFK Williamson, TY Chen… - Nature biomedical …, 2023 - nature.com
In healthcare, the development and deployment of insufficiently fair systems of artificial
intelligence (AI) can undermine the delivery of equitable care. Assessments of AI models …

Federated machine learning: Survey, multi-level classification, desirable criteria and future directions in communication and networking systems

OA Wahab, A Mourad, H Otrok… - … Surveys & Tutorials, 2021 - ieeexplore.ieee.org
The communication and networking field is hungry for machine learning decision-making
solutions to replace the traditional model-driven approaches that proved to be not rich …

Fine-tuning global model via data-free knowledge distillation for non-iid federated learning

L Zhang, L Shen, L Ding, D Tao… - Proceedings of the …, 2022 - openaccess.thecvf.com
Federated Learning (FL) is an emerging distributed learning paradigm under privacy
constraint. Data heterogeneity is one of the main challenges in FL, which results in slow …

Federated learning for generalization, robustness, fairness: A survey and benchmark

W Huang, M Ye, Z Shi, G Wan, H Li… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Federated learning has emerged as a promising paradigm for privacy-preserving
collaboration among different parties. Recently, with the popularity of federated learning, an …

Three approaches for personalization with applications to federated learning

Y Mansour, M Mohri, J Ro, AT Suresh - arXiv preprint arXiv:2002.10619, 2020 - arxiv.org
The standard objective in machine learning is to train a single model for all users. However,
in many learning scenarios, such as cloud computing and federated learning, it is possible …

On bridging generic and personalized federated learning for image classification

HY Chen, WL Chao - arXiv preprint arXiv:2107.00778, 2021 - arxiv.org
Federated learning is promising for its capability to collaboratively train models with multiple
clients without accessing their data, but vulnerable when clients' data distributions diverge …

Personalized federated learning with first order model optimization

M Zhang, K Sapra, S Fidler, S Yeung… - arXiv preprint arXiv …, 2020 - arxiv.org
While federated learning traditionally aims to train a single global model across
decentralized local datasets, one model may not always be ideal for all participating clients …

Federated learning of a mixture of global and local models

F Hanzely, P Richtárik - arXiv preprint arXiv:2002.05516, 2020 - arxiv.org
We propose a new optimization formulation for training federated learning models. The
standard formulation has the form of an empirical risk minimization problem constructed to …

A review of single-source deep unsupervised visual domain adaptation

S Zhao, X Yue, S Zhang, B Li, H Zhao… - … on Neural Networks …, 2020 - ieeexplore.ieee.org
Large-scale labeled training datasets have enabled deep neural networks to excel across a
wide range of benchmark vision tasks. However, in many applications, it is prohibitively …

Addressing class imbalance in federated learning

L Wang, S Xu, X Wang, Q Zhu - … of the AAAI Conference on Artificial …, 2021 - ojs.aaai.org
Federated learning (FL) is a promising approach for training decentralized data located on
local client devices while improving efficiency and privacy. However, the distribution and …