Heat treatment for metal additive manufacturing

M Laleh, E Sadeghi, RI Revilla, Q Chao… - Progress in Materials …, 2023 - Elsevier
Metal additive manufacturing (AM) refers to any process of making 3D metal parts layer-
upon-layer via the interaction between a heating source and feeding material from a digital …

About metastable cellular structure in additively manufactured austenitic stainless steels

D Kong, C Dong, S Wei, X Ni, L Zhang, R Li… - Additive …, 2021 - Elsevier
The quick-emerging paradigm of additive manufacturing technology has revealed salient
advantages in enabling the tailored-design of structural components with more exceptional …

Heterostructured stainless steel: Properties, current trends, and future perspectives

L Romero-Resendiz, M El-Tahawy, T Zhang… - Materials Science and …, 2022 - Elsevier
The study of heterostructured materials (HSMs) answered one of the most pressing
questions in the metallurgical field:“is it possible to greatly increase both the strength and the …

New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion

T Voisin, JB Forien, A Perron, S Aubry, N Bertin… - Acta Materialia, 2021 - Elsevier
Rapid solidification cellular structures are known to play a crucial role in helping achieve
high strength and high ductility in 316L austenitic stainless steels fabricated by laser powder …

Review on corrosion performance of laser powder-bed fusion printed 316L stainless steel: Effect of processing parameters, manufacturing defects, post-processing …

VB Vukkum, RK Gupta - Materials & Design, 2022 - Elsevier
The applications of laser-powder bed fusion (LPBF), an emerging additive manufacturing
(AM) technique, are rapidly growing in various industries. The superior and consistent …

Methods and materials for additive manufacturing: A critical review on advancements and challenges

MB Kumar, P Sathiya - Thin-Walled Structures, 2021 - Elsevier
Additive Manufacturing (AM) is the significantly progressing field in terms of methods,
materials, and performance of fabricated parts. Periodical evaluation on the understanding …

Machine learning based fatigue life prediction with effects of additive manufacturing process parameters for printed SS 316L

Z Zhan, H Li - International Journal of Fatigue, 2021 - Elsevier
In aerospace engineering, many additive manufacturing (AM) metal parts subject to fatigue
loadings, resulting in their fatigue failure. Therefore, it is essential to develop an advanced …

Corrosion performance of additively manufactured stainless steel parts: A review

AH Ettefagh, S Guo, J Raush - Additive manufacturing, 2021 - Elsevier
The application of additively manufactured (AM) stainless steel (SS) parts is rapidly
emerging in a broad spectrum of industries. Laser powder bed fusion (LPBF) and direct …

[HTML][HTML] Selective laser melting of dispersed TiC particles strengthened 316L stainless steel

W Zhai, Z Zhu, W Zhou, SML Nai, J Wei - Composites Part B: Engineering, 2020 - Elsevier
Abstract 316L austenitic stainless steel has a wide range of industrial applications. However,
one of the major drawbacks is its low yield strength (170–300 MPa in annealed state). We …

The passivity of selective laser melted 316L stainless steel

D Kong, C Dong, X Ni, L Zhang, H Luo, R Li… - Applied Surface …, 2020 - Elsevier
The passive film properties of as-received selective laser-melted 316L stainless steel
(SLMed 316L SS) without obvious pores were studied and compared with those of wrought …