The obstacle problem for a class of degenerate fully nonlinear operators

JV Da Silva, H Vivas - Revista Matemática Iberoamericana, 2021 - ems.press
The obstacle problem for a class of degenerate fully nonlinear operators Page 1 Rev. Mat.
Iberoam. 37 (2021), no. 5, 1991–2020 doi 10.4171/rmi/1256 c 2021Real Sociedad …

Calderón–Zygmund estimates for the fully nonlinear obstacle problem with super-linear Hamiltonian terms and unbounded ingredients

JV da Silva, RT Frias - Mathematische Zeitschrift, 2024 - Springer
In this work, we show the existence/uniqueness of L p-viscosity solutions for a fully non-
linear obstacle problem with super-linear gradient growth, unbounded ingredients and …

On -estimates for solutions of obstacle problems for fully nonlinear elliptic equations with oblique boundary conditions

SS Byun, J Han, J Oh - Calculus of Variations and Partial Differential …, 2022 - Springer
This paper concerns fully nonlinear elliptic obstacle problems with oblique boundary
conditions. We investigate the existence, uniqueness and W 2, p-regularity results by finding …

Sharp regularity for degenerate obstacle type problems: a geometric approach

JV Da Silva, H Vivas - arXiv preprint arXiv:1911.00542, 2019 - arxiv.org
We prove sharp regularity estimates for solutions of obstacle type problems driven by a class
of degenerate fully nonlinear operators; more specifically, we consider viscosity solutions …

Sharp Hessian estimates for fully nonlinear elliptic equations under relaxed convexity assumptions, oblique boundary conditions and applications

JS Bessa, JV da Silva, MNB Frederico… - Journal of Differential …, 2023 - Elsevier
We derive global W 2, p estimates (with n≤ p<∞) for viscosity solutions to fully nonlinear
elliptic equations under relaxed structural assumptions on the governing operator that are …

[PDF][PDF] Existence, uniqueness, and regularity of solutions to nonlinear and non-smooth parabolic obstacle problems

T Durandard, B Strulovici - 2024 - faculty.wcas.northwestern.edu
We establish the existence, uniqueness, and W1, 2, p-regularity of solutions to fully
nonlinear parabolic obstacle problems when the obstacle is the pointwise supremum of …

On Weighted Lorentz-Sobolev estimates of obstacle problems for fully nonlinear elliptic equations under relaxed convexity assumptions with oblique boundary

JS Bessa, GC Ricarte - arXiv preprint arXiv:2302.09177, 2023 - arxiv.org
In this work, we will study estimates for the Hessian of viscosity solutions of obstacle-type
problems with oblique boundary conditions where and governed by fully nonlinear elliptic …

Existence, uniqueness, and regularity of solutions to nonlinear and non-smooth parabolic obstacle problems

D Théo, S Bruno - arXiv preprint arXiv:2404.01498, 2024 - arxiv.org
We establish the existence, uniqueness, and $ W^{1, 2, p} $-regularity of solutions to fully
nonlinear parabolic obstacle problems when the obstacle is the pointwise supremum of …

Regularidade elíptica para modelos não-lineares com condição de bordo oblíquo e aplicações

JS Bessa - 2024 - repositorio.ufc.br
A Teoria de regularidade para soluçoes no sentido da viscosidade de equaçoes elıpticas
totalmente nao-lineares é um tópico de muito interesse para vários pesquisadores. Um dos …

[PDF][PDF] João Vitor da Silva

G Ricarte - coloquio34.impa.br
A primeira parte desta obra foi inspirada em alguns cursos de pós-graduação (Tópicos de
EDPs e Seminários de Análise e EDPs) ministrados pelo primeiro autor no IMECC …